Схема испытаний Бернулли

Пусть в результате некоторого случайного испытания может произойти или не произойти определенное событие А. Испытание повторяется n раз. При этом соблюдаются условия: вероятность успеха Р(А) = р в каждом испытании одна и та же; результат любого испытания не зависит от исходов предыдущих испытаний.

Такая последовательность испытаний с двумя исходами (успех/неудача) называется последовательностью независимых испытаний Бернулли или схемой Бернулли.

Вероятность k успехов в n независимых испытаниях вычисляется по формуле Бернулли:

Схема испытаний Бернулли - student2.ru

Здесь Схема испытаний Бернулли - student2.ru – число сочетаний из n по k: Схема испытаний Бернулли - student2.ru .

В практических задачах часто приходится вычислять вероятности различных событий, связанных с числом успехов в n испытаниях при больших значениях n. В этих случаях вычисления по формуле Бернулли становятся затруднительными. В отдельных случаях при больших n удается заменить формулу Бернулли приближенными формулами. Такие формулы, которые получаются при условии Схема испытаний Бернулли - student2.ru называются асимптотическими.

Если n достаточно велико, а p – величина очень малая, для формулы Бернулли имеет место приближенная (асимптотическая) формула

Схема испытаний Бернулли - student2.ru .

Здесь Схема испытаний Бернулли - student2.ru ( Схема испытаний Бернулли - student2.ru – греческая буква "лямбда"). Эта формула называется формулой Пуассона.

По формуле Пуассона вычисляются вероятности числа появлений очень редких событий в массовых испытаниях.

Наши рекомендации