Автокорреляция уровней временного ряда

При наличии во временном ряде тенденции и циклических колебаний значения каждого последующего уровня ряда зависят от предыдущих. Корреляционную зависимость между последовательными уровнями временного ряда называют автокорреляцией уровней ряда.

Количественно ее можно измерить с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени.

Формула для расчета коэффициента автокорреляции имеет вид:

Автокорреляция уровней временного ряда - student2.ru (4.1)

где

Автокорреляция уровней временного ряда - student2.ru

Эту величину называют коэффициентом автокорреляции уровней ряда первого порядка, так как он измеряет зависимость между соседними уровнями ряда Автокорреляция уровней временного ряда - student2.ru и Автокорреляция уровней временного ряда - student2.ru .

Аналогично можно определить коэффициенты автокорреляции второго и более высоких порядков. Так, коэффициент автокорреляции второго порядка характеризует тесноту связи между уровнями Автокорреляция уровней временного ряда - student2.ru и Автокорреляция уровней временного ряда - student2.ru и определяется по формуле:

Автокорреляция уровней временного ряда - student2.ru (4.2)

где

Автокорреляция уровней временного ряда - student2.ru

Число периодов, по которым рассчитывается коэффициент автокорреляции, называют лагом. С увеличением лага число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается. Считается целесообразным для обеспечения статистической достоверности коэффициентов автокорреляции использовать правило – максимальный лаг должен быть не больше Автокорреляция уровней временного ряда - student2.ru .

Свойства коэффициента автокорреляции.

1. Он строится по аналогии с линейным коэффициентом корреляции и таким образом характеризует тесноту только линейной связи текущего и предыдущего уровней ряда. Поэтому по коэффициенту автокорреляции можно судить о наличии линейной (или близкой к линейной) тенденции. Для некоторых временных рядов, имеющих сильную нелинейную тенденцию (например, параболу второго порядка или экспоненту), коэффициент автокорреляции уровней исходного ряда может приближаться к нулю.

2. По знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда. Большинство временных рядов экономических данных содержат положительную автокорреляцию уровней, однако при этом могут иметь убывающую тенденцию.

Последовательность коэффициентов автокорреляции уровней первого, второго и т.д. порядков называют автокорреляционной функцией временного ряда. График зависимости ее значений от величины лага (порядка коэффициента автокорреляции) называется коррелограммой.

Анализ автокорреляционной функции и коррелограммы позволяет определить лаг, при котором автокорреляция наиболее высокая, а следовательно, и лаг, при котором связь между текущим и предыдущими уровнями ряда наиболее тесная, т.е. при помощи анализа автокорреляционной функции и коррелограммы можно выявить структуру ряда.

Если наиболее высоким оказался коэффициент автокорреляции первого порядка, исследуемый ряд содержит только тенденцию. Если наиболее высоким оказался коэффициент автокорреляции порядка Автокорреляция уровней временного ряда - student2.ru , то ряд содержит циклические колебания с периодичностью в Автокорреляция уровней временного ряда - student2.ru моментов времени. Если ни один из коэффициентов автокорреляции не является значимым, можно сделать одно из двух предположений относительно структуры этого ряда: либо ряд не содержит тенденции и циклических колебаний, либо ряд содержит сильную нелинейную тенденцию, для выявления которой нужно провести дополнительный анализ. Поэтому коэффициент автокорреляции уровней и автокорреляционную функцию целесообразно использовать для выявления во временном ряде наличия или отсутствия трендовой компоненты и циклической (сезонной) компоненты.

Рассмотрим пример. Пусть имеются некоторые условные данные об общем количестве правонарушений на таможне одного из субъектов РФ (например, Республики Татарстан).

Таблица 4.1

Год Квартал Автокорреляция уровней временного ряда - student2.ru Количество возбужденных дел, Автокорреляция уровней временного ряда - student2.ru
I
II
III
IV
I
II
III
IV
I
II
III
IV
I
II
III
IV

Построим поле корреляции:

Автокорреляция уровней временного ряда - student2.ru

Рис. 4.4.

Уже исходя из графика видно, что значения Автокорреляция уровней временного ряда - student2.ru образуют пилообразную фигуру. Рассчитаем несколько последовательных коэффициентов автокорреляции. Для этого составляем первую вспомогательную таблицу.

Таблица 4.2

Автокорреляция уровней временного ряда - student2.ru Автокорреляция уровней временного ряда - student2.ru Автокорреляция уровней временного ряда - student2.ru Автокорреляция уровней временного ряда - student2.ru Автокорреляция уровней временного ряда - student2.ru Автокорреляция уровней временного ряда - student2.ru Автокорреляция уровней временного ряда - student2.ru Автокорреляция уровней временного ряда - student2.ru
-328,33 -288,13 94601,72 107800,59 83018,90
169,67 -292,13 -49565,70 28787,91 85339,94
315,67 205,87 64986,98 99647,55 42382,46
-342,33 351,87 -120455,66 117189,83 123812,50
-228,33 -306,13 69898,66 52134,59 93715,58
292,67 -192,13 -56230,69 85655,73 36913,94
320,67 328,87 105458,74 102829,25 108155,48
-309,33 356,87 -110390,60 95685,05 127356,20
-344,33 -273,13 94046,85 118563,15 74600,00
292,67 -308,13 -90180,41 85655,73 94944,10
205,67 328,87 67638,69 42300,15 108155,48
-238,33 241,87 -57644,88 56801,19 58501,10
-245,33 -202,13 49588,55 60186,81 40856,54
220,67 -209,13 -46148,72 48695,25 43735,36
227,67 256,87 58481,59 51833,63 65982,20
Сумма 9,05 0,05 74085,16 1153766,39 1187469,73
Среднее значение 699,33 663,13

Следует заметить, что среднее значение получается путем деления не на 16, а на 15, т.к. у нас теперь на одно наблюдение меньше.

Теперь вычисляем коэффициент автокорреляции первого порядка по формуле (4.1):

Автокорреляция уровней временного ряда - student2.ru .

Составляем вспомогательную таблицу для расчета коэффициента автокорреляции второго порядка.

Таблица 4.3

Автокорреляция уровней временного ряда - student2.ru Автокорреляция уровней временного ряда - student2.ru Автокорреляция уровней временного ряда - student2.ru Автокорреляция уровней временного ряда - student2.ru Автокорреляция уровней временного ряда - student2.ru Автокорреляция уровней временного ряда - student2.ru Автокорреляция уровней временного ряда - student2.ru Автокорреляция уровней временного ряда - student2.ru
145,57 -269,79 -39273,33 21190,62 72786,64
291,57 -273,79 -79828,95 85013,06 74960,96
-366,43 224,21 -82157,27 134270,94 50270,12
-252,43 370,21 -93452,11 63720,90 137055,44
268,57 -287,79 -77291,76 72129,84 82823,08
296,57 -173,79 -51540,90 87953,76 30202,96
-333,43 347,21 -115770,23 111175,56 120554,78
-368,43 375,21 -138238,62 135740,66 140782,54
268,57 -254,79 -68428,95 72129,84 64917,94
181,57 -289,79 -52617,17 32967,66 83978,24
-262,43 347,21 -91118,32 68869,50 120554,78
-269,43 260,21 -70108,38 72592,52 67709,24
196,57 -183,79 -36127,60 38639,76 33778,76
203,57 -190,79 -38839,12 41440,74 36400,82
Сумма -0,02 -0,06 -1034792,71 1037835,43 1116776,36
Среднее значение 723,43 644,79

Следовательно

Автокорреляция уровней временного ряда - student2.ru .

Аналогично находим коэффициенты автокорреляции более высоких порядков, а все полученные значения заносим в сводную таблицу.

Таблица 4.4

Лаг Коэффициент автокорреляции уровней
0,063294
–0,961183
–0,036290
0,964735
0,050594
–0,976516
–0,069444
0,964629
0,162064
-0,972918
-0,065323
0,985761

Коррелограмма:

Автокорреляция уровней временного ряда - student2.ru

Рис. 4.5.

Анализ коррелограммы и графика исходных уровней временного ряда позволяет сделать вывод о наличии в изучаемом временном ряде сезонных колебаний периодичностью в четыре квартала.

Наши рекомендации