Взаимное расположение двух прямых

Прямые линии в пространстве могут быть параллельными, пересекающимися и скрещивающимися. Рассмотрим подробнее каждый случай:

1. Параллельные прямые линии.

· Параллельными называются две прямые, которые лежат в одной плоскости и не имеют общих точек.

· Проекции параллельных прямых на любую плоскость (не перпендикулярную данным прямым) - параллельны.

Это свойство параллельного проецирования остается справедливым и для ортогональных проекций, то есть если AB//CD то A1B1//C1D1; A2B2//C2D2; A3B3//C3D3 (рис.3.19). В общем случае справедливо и обратное утверждение.

Взаимное расположение двух прямых - student2.ru

А) модель

Взаимное расположение двух прямых - student2.ru

Б) эпюр

Рисунок 3.19. Параллельные прямые

Особый случай представляют собой прямые, параллельные одной из плоскостей проекций. Например, фронтальные и горизонтальные проекции профильных прямых параллельны, но для оценки их взаимного положения необходимо сделать проекцию на профильную плоскость проекций (рис. 3.20). В рассмотренном случае проекции отрезков на плоскость П3 пересекаются, следовательно, они не параллельны.

Решение этого вопроса можно получить сравнением двух соотношений если:

А2В2/ А1В1= С2Д2/ С1 Д1Þ АВ//СД

А2В2/ А1В1¹ С2Д2/ С1Д1Þ АВ#СД

Взаимное расположение двух прямых - student2.ru

А) модель

Взаимное расположение двух прямых - student2.ru

Б) эпюр

Рисунок 3.20. Прямые параллельные профильной плоскости проекций

Пересекающиеся прямые.

Пересекающимися называются две прямые лежащие в одной плоскости и имеющие одну общую точку.

Если прямые пересекаются, то точки пересечения их одноименных проекций находится на одной линии связи (рис. 3.21).

Взаимное расположение двух прямых - student2.ru

А) модель

Взаимное расположение двух прямых - student2.ru

Б) эпюр

Рисунок 3.22.Одна из прямых параллельна профильной плоскости проекций

2. Пересекающие прямые расположены в общей для них проекционной плоскости, например перпендикулярной фронтальной плоскости проекций (рис. 3.23). О взаимном расположении прямых, лежащих в этой плоскости, можно судить по одной проекции, например, на горизонтальную плоскость проекций (А1В1∩С1D1ÞАВ∩СD)

Взаимное расположение двух прямых - student2.ru

А) модель

Взаимное расположение двух прямых - student2.ru

Б) эпюр

Рисунок 3.23. Пересекающиеся прямые расположены в фронтально проецирующей плоскости

Скрещивающиеся прямые

Скрещивающимися называются две прямые не лежащие в одной плоскости.

Если прямые не пересекаются и не параллельны между собой, то точка пересечения их одноименных проекций не лежит на одной линии связи.

Точке пересечения фронтальных проекций прямых (рис. 3.24) соответствуют две точки А и В, из которых одна принадлежит прямой а, другая в . Их фронтальные проекции совпадают лишь потому, что в пространстве обе точки А и В находятся на общем перпендикуляре к фронтальной плоскости проекций. Горизонтальная проекция этого перпендикуляра, обозначенная стрелкой, позволяет установить, какая из двух точек ближе к наблюдателю. На предложенном примере ближе точка В лежащая на прямой в, следовательно, прямая в проходит в этом месте ближе прямой а и фронтальная проекция точки В закрывает проекцию точки А. (Для точек С и Д решение аналогично).

Этот способ определения видимости по конкурентным точкам. В данном случае точки А и В - фронтально конкурирующие, а С и Д -горизонтально конкурирующие.

Взаимное расположение двух прямых - student2.ru

А) модель

Взаимное расположение двух прямых - student2.ru

Б) эпюр

Рисунок 3.24. Скрещивающиеся прямые

Проекции плоских углов

Угол - геометрическая фигура, состоящая из двух различных лучей, выходящих из одной точки. Углом между прямыми называется меньший из двух углов между лучами, параллельными этим прямым. Углом между плоскостью и не перпендикулярной ей прямой называется угол между прямой и её проекцией на данную плоскость.

Рассмотрим ряд свойств ортогональных проекций плоских углов:

1. Если хотя бы одна из сторон прямого угла параллельна плоскости проекций, а другая не перпендикулярна ей, то на эту плоскость прямой угол проецируется без искажения (Теорема о проецировании прямого угла)

Взаимное расположение двух прямых - student2.ru

Рисунок 3.25. Теорема о проецировании прямого угла

Взаимное расположение двух прямых - student2.ru

Рисунок 3.26. Обратная теорема о проецировании прямого угла

Дано: Взаимное расположение двух прямых - student2.ru АВС = 90о; [ВС] // П1; [АС] # П1.

Для доказательства теоремы продлим отрезок АС до пересечения с плоскостью П1 (рис. 3.25) получим горизонтальный след прямой - точку М º М1, одновременно принадлежащую прямой и ее проекции. Из свойства ортогонального проецирования следует, что [ВС] // [В1С1]. Если через точку М проведем прямую МD параллельную С1В1 , то она будет параллельна и СВ, а следовательно ÐСМD= 90о. Согласно теореме о трех перпендикулярах ÐС1МD=90о. Таким образом, [MD]^[А1С1] и [MD]//[В1С1], следовательно, ÐА1С1В1= 90о, что и требовалось доказать. В случае когда [АС]^П1 проекцией угла, согласно свойствам ортогонального проецирования, будет прямая линия.

2. Если проекция угла представляет угол 900, то проецируемый угол будет прямым лишь при условии, что одна из сторон этого угла параллельна плоскости проекций (рис. 3.26).

3. Если обе стороны любого угла параллельны плоскости проекций, то его проекция равна по величине проецируемому углу.

4. Если стороны угла параллельны плоскости проекций или одинаково наклонены к ней, то деление проекции угла на этой плоскости пополам соответствует делению пополам и самого угла в пространстве.

5. Если стороны угла не параллельны плоскости проекций, то угол на эту плоскость проецируется с искажением.

Лекция №4

Типы задач начертательной геометрии

Решение многих задач способами начертательной геометрии, в конечном счете, сводится к определению позиционных и метрических характеристик геометрических объектов. В связи с этим все многообразие задач может быть отнесено к двум группам:

1.Задачи позиционные – решение, которых должно давать ответ на вопрос о взаимном расположении геометрических объектов (в частном случае, выяснить их взаимную принадлежность) как по отношению друг к другу, так и относительно системы координатных плоскостей проекций.

2.Задачи метрические – при решении задач этой группы появляется возможность ответить на вопросы, касающиеся как внутренней метрики заданных геометрических объектов (определение расстояния между различными точками объекта и нахождения углов между линиями и поверхностями, принадлежащими этому объекту), так и определение расстояний между точками и величин углов между линиями и поверхностями, принадлежащими различным объектам.

В начертательной геометрии задачи решаются графически. Количество и характер геометрических построений при этом определяются не только сложностью задачи, но и в значительной степени зависит от того, с какими проекциями (удобными или неудобными) приходится иметь дело. При этом наиболее выгодным частным положением геометрического объекта следует считать:

· Положение, перпендикулярное к плоскости проекций (для решения позиционных, а в ряде случаев, и метрических задач);

· Положение, параллельное по отношению к плоскости проекций (при решении метрических задач).

При решении метрических задач, связанных с определением истинных размеров изображенных на эпюре фигур, могут встретиться значительные трудности, если заданные проекции не подвергнуть специальным преобразованиям.

Рассмотрим на примере:

Определить расстояние от точки А до прямой m.

Расстояние от точки до прямой - это натуральная величина перпендикуляра восстановленного из точки к прямой линии. Простейшим условием такой задачи является случай, когда прямая является проецирующей. Определим расстояние от точки А до прямой m, когда прямая является горизонтально проецирующей линией (рис. 4.1), т.е. m^П1, m \\ П2, m \\ П3. Согласно, теореме о проецировании прямого угла, перпендикуляр из проекций точки А можно проводить к фронтальной и профильной проекции прямой m, при этом полученный отрезок АК- горизонталь, т.е. параллелен горизонтальной плоскости проекций и на эту плоскость проецируется в натуральную величину.

Взаимное расположение двух прямых - student2.ru

А) модель

Взаимное расположение двух прямых - student2.ru

Б) эпюр

Рисунок 4.1. Расстояние от точки до горизонтально проецирующей прямой

Наши рекомендации