П. 1.7. теорема полной вероятности. формула байеса

Приведенная ниже формула объединяет теоремы сложения и умножения. Вероятность события A, которое может произойти при условии осуществления одного из несовместных событий В1, В2, В3, ... Bn, образующих полную группу, определяется формулой

(1.7.1)

п. 1.7. теорема полной вероятности. формула байеса - student2.ru

Для наступления события A необходимо и достаточно наступления или события AB1, или события АВ2, или события АВ3, ..., или события ABn,

А=АВ1+АВ2+АВ3+…+АВп

Так как события АВi несовместны, то п. 1.7. теорема полной вероятности. формула байеса - student2.ru поэтому п. 1.7. теорема полной вероятности. формула байеса - student2.ru (1.7.2)

Пример. Азотное удобрение поступает на склад хозяйства из пункта 1 и пункта 2, причем, из 1-го пункта в 2 раза больше, чем из 2-го. Вероятность события = {удобрение из первого пункта удовлетворяет стандарту}0,9, а соответствующая вероятность для второго пункта равна 0,7.Определить вероятность события А = {взятое для пробы на складе хозяйства удобрение удовлетворяет стандарту}.

Решение. Обозначим

событие В1 = {удобрение поступило из пункта 1};

событие В2 = {удобрение поступило из пункта 2};

Находим

п. 1.7. теорема полной вероятности. формула байеса - student2.ru , п. 1.7. теорема полной вероятности. формула байеса - student2.ru , п. 1.7. теорема полной вероятности. формула байеса - student2.ru , п. 1.7. теорема полной вероятности. формула байеса - student2.ru ;

п. 1.7. теорема полной вероятности. формула байеса - student2.ru

Событие А имеет большую вероятность, оно практически достоверно, т. е. наступит в среднем в 83 случаях из 100.

Формула Байеса. Рассмотрим следующую задачу. На фермах А и В произошла вспышка заболевания ящуром. Доли заражения скота составляют соответственно 1/6 и 1/4. Случайным образом отобранное из одной фермы животное оказалось заболевшим. Найти вероятность события = {животное выбрано из фермы А}. Обозначим:

А = {отобранное животное заражено};

событие В1 = {животное выбрано из фермы А}, Р(B1) = 0,5;

событие В2 = {животное выбрано из фермы В}, Р(B2) = 0,5;

А/В1 = {животное, отобранное из фермы А, заражено};

A/B2 = {животное, отобранное из фермы В, заражено}.

Вероятность события = {животное выбрано из фермы А и заражено} можно записать в виде Р(А)∙Р(В1/А) = P(B1)∙Р(А/В1), откуда

п. 1.7. теорема полной вероятности. формула байеса - student2.ru (*)

или

п. 1.7. теорема полной вероятности. формула байеса - student2.ru

Заменив в (*) Р(А) на п. 1.7. теорема полной вероятности. формула байеса - student2.ru , получим

· п. 1.7. теорема полной вероятности. формула байеса - student2.ru (**)

Формула (**) является частным случаем формулы Байеса.

Рассмотрим задачу в общем виде. Пусть в результате испытания произошло событие А, которое могло наступить только вместе с каждым из событий B1, В2, В3,..., Вп, образующих полную группу; P(B1), Р(В2), ... , Р(Вп) заранее известны. Требуется найти вероятности событий В1, B2,..., Вп после испытания, когда событие А уже имело место, т. е. P(Bi/A), i=1, 2, ..., п.

Проводя рассуждения, аналогичные приведенным при решении задачи, получим формулу

п. 1.7. теорема полной вероятности. формула байеса - student2.ru (1.7.3)

Эта формула называется формулой Байеса. По формуле (1.7.3) можно вычислить вероятности событий Вi, когда событие А произошло, т. е. переоценить вероятности.

П. 1.8. ЗАДАЧИ, ПРИВОДЯЩИЕ К ОПРЕДЕЛЕНИЮ ЧАСТОТЫ ПОЯВЛЕНИЯ СОБЫТИЯ В НЕЗАВИСИМЫХ ИСПЫТАНИЯХ.

ФОРМУЛА БЕРНУЛЛИ

Задача 1. Допустим, что на опытной делянке посеяно 15 семян. Примем, что всхожесть всех семян одинакова и равна 80%. Возможны следующие элементарные события:

А0 = {число семян, давших росток, равно 0};

А1 = {число взошедших семян равно 1};

А2 = {число взошедших семян равно 2};

и т. д. и, наконец,

A15 = {все семена дадут всходы}.

Как найти вероятности этих событий, в частности, вычислить вероятность того, что из 15 посеянных семян взойдет ровно 12, безразлично в какой последовательности?

Рассмотрим серию из n независимых испытаний, в каждом из которых некоторое событие А имеет одну и ту же вероятность Р(А) = р, не зависящую от номера испытания.

Такая серия испытаний называется схемой Бернулли.

Решим следующую задачу. В условиях схемы Бернулли определим вероятность Pk,n события, состоящего в том, что при п повторениях испытания событие А, которое имеет одну и ту же вероятность появления в каждом испытании, произойдет ровно k раз безразлично в какой последовательности. Элементарными исходами испытаний являются:

событие п. 1.7. теорема полной вероятности. формула байеса - student2.ru = {появление события А в i-м испытании} (i = l, 2, 3, ..., n), P(Ai) = p;

событие п. 1.7. теорема полной вероятности. формула байеса - student2.ru = {непоявление события А в i-м испытании} (i=1, 2, 3,..., п), P( п. 1.7. теорема полной вероятности. формула байеса - student2.ru )=1 – p = g.

Предположим, что событие А имело место в k первых испытаниях и не произошло в п–k последующих, т. е. в соответствии с определением произведения событий, произошло событие A1A2A3...Ak п. 1.7. теорема полной вероятности. формула байеса - student2.ru ...An. Так как испытания независимы, то, применив теорему умножения вероятностей, получим

п. 1.7. теорема полной вероятности. формула байеса - student2.ru .

Число способов наступления сложного события, состоящего в появлении события А именно k раз и непоявлении n – k раз равно числу всевозможных множеств, которые можно образовать из п элементов по k элементов, и отличающихся только составом. Число таких множеств

равно п. 1.7. теорема полной вероятности. формула байеса - student2.ru [см. формулу (1.2.3)].

Итак, вероятность наступления события А ровно k раз в серии n - испытаний равно

п. 1.7. теорема полной вероятности. формула байеса - student2.ru (1.8.1)

Это формула Бернулли. Здесь п – число повторений независимых испытаний; k – число испытаний, в которых событие А произошло (число успехов); р – вероятность появления события А в одном испытании; g - вероятность непоявления события А в одном испытании (g = 1–p); Pk,n – вероятность сложного события, состоящего в том, что при п испытаниях событие А наступило ровно k раз.

Вернемся к сформулированной выше задаче.

1. Число посеянных семян равно числу независимых испытаний, т. е. n = 15,число «успехов» k= 12, p = 0,8, g = 1 – 0,8 = 0,2. Тогда

п. 1.7. теорема полной вероятности. формула байеса - student2.ru

Событие «12 из 15» имеет небольшую вероятность. Если наблюдать такие серии повторений испытаний, то 12 успехов из 15 испытаний будут иметь место в среднем в 25 сериях из 100.

Наши рекомендации