Распределение потенциала вдоль участка ветви. Потенциальная диаграмма

Рассмотрим участок электрической цепи (рис. 16)

Распределение потенциала вдоль участка ветви. Потенциальная диаграмма - student2.ru

Рис. 16.

Участок ветви, содержащий один или несколько источников энергии, является активным.

Положительные направления тока и напряжения указаны стрелкой.

Определим потенциалы точек c, d, e, b, предположив, что известен потенциал точки a-ja.

Для правильного выбора знаков следует помнить, что:

1) ток в сопротивлении всегда направлен от более высокого потенциала к более низкому, т.е. потенциал падает по направлению тока.

2) э.д.с., направленная от точки «с» к точке «d», повышает потенциал последней на величину E.

3) напряжение U=Uac положительно, когда потенциал точки а выше, чем потенциал точки с.

При обозначении напряжения (разности потенциалов) на схемах посредством стрелки она ставится в направлении от точки высшего потенциала к точке низшего потенциала.

На рис. 16 ток протекает от точки «а» к точке «с», значит потенциал jс будет меньше ja на величину падения напряжения на сопротивлении R1, которое по закону Ома равно IR1:

jс = ja - IR1

На участке cd э.д.с. E1 действует в сторону повышения потенциала, следовательно:

jd = jс + E1 = ja - IR1+ E1

Потенциал точки «e» меньше потенциала точки «d» на величину падения напряжения на сопротивлении R2:

je = jd – IR2 = ja - IR1+ E1– IR2

На участке e в э.д.с. E2 действует таким образом, что потенциал точки «b» меньше потенциала точки «e» на величину E2:

jb = je – E2 = ja - IR1+ E1– IR2 – E2 = ja – I(R1+R2) + E1-E2 (15)

Чтобы наглядно оценить распределение потенциала вдоль участка цепи, полезно построить потенциальную диаграмму, которая представляет график изменения потенциала вдоль участка цепи или замкнутого контура.

По оси абсцисс графика откладываются потенциалы точек, а по оси ординат – сопротивления отдельных участков цепи. Для участка цепи рис. 16 распределение потенциала построено на рис. 17.

Распределение потенциала вдоль участка ветви. Потенциальная диаграмма - student2.ru

Рис. 16. Потенциальная диаграмма участка цепи.

Потенциальная диаграмма рис. 16 построена, начиная с точки a, которая условно принята за начало отсчета. Потенциал ja принят равным нулю.

Точка цепи, потенциал которой условно принимается равным нулю, называется базисной.

Если в условии задачи не оговорено, какая точка является базисной, то можно потенциал любой точки условно приравнивать к нулю. Тогда потенциалы всех остальных точек будут определяться относительно выбранного базиса.

Обобщенный закон Ома.

Закон Ома выражаемый формулой Распределение потенциала вдоль участка ветви. Потенциальная диаграмма - student2.ru , определяет зависимость между током и напряжением на пассивном участке электрической цепи.

Определим зависимость между током, напряжением и э.д.с. на активном участке (рис. 16).

Из формулы 15 следует:

ja -jb=I(R1+R2)- E1+E2 (16)

На положительное напряжение на участке a – b Uab=ja -jb

Следовательно, Uab= I(R1+R2)- E1+E2 (17)

Распределение потенциала вдоль участка ветви. Потенциальная диаграмма - student2.ru (18)

Формула (18) выражает обобщенный закон Ома, или закон Ома для участка, содержащего э.д.с.

Из формулы видно, что если ток, напряжение и э.д.с. совпадают по направлению, то в выражение закона Ома они входят с одинаковыми знаками. Если э.д.с. действует в сторону, противоположную положительному направлению тока, то в выражении ставится знак «-».

Закон Ома применяется для участка ветви и для одноконтурной замкнутой схемы.

Пример № 1 построения потенциальной диаграммы:

Построить потенциальную диаграмму для одноконтурной схемы:

Распределение потенциала вдоль участка ветви. Потенциальная диаграмма - student2.ru

E1=25В; E2=5В; E3=20В; E4=35В,

R1=8 Ом; R2=24 Ом; R3=40 Ом; R4=4 Ом,

r1=2 Ом; r2=6 Ом; r3=2 Ом; r4=4 Ом.

Решение: 1. перерисуем заданный контур, вынося внутренние сопротивления э.д.с. (r1- r4) за их пределы; обозначим точки контура.

Распределение потенциала вдоль участка ветви. Потенциальная диаграмма - student2.ru

Рис.2

2. Выберем положительное направление тока I, определим его значение используя обобщенный закон Ома:

Распределение потенциала вдоль участка ветви. Потенциальная диаграмма - student2.ru

3. За базисную точку примем точку a. Найдем потенциалы остальных точек:

jb = ja – IR1 = - 4В je = jd – IR2 =

jc = jb – Ir1 = - 5В jf = je + E2 = 13В

jd = jc + E1 = 20В jq = jf – Ir2 = 10В

jk = jq – IR3 = - 10В jn = jm – IR4 = - 33В

je = jk – E3 = - 30В jo = jn – Ir4 = - 35В

jm = je – Ir3 = - 31В ja = jo + E4 = 0

4. В системе координат строим потенциальную диаграмму:

Распределение потенциала вдоль участка ветви. Потенциальная диаграмма - student2.ru

Законы Кирхгофа.

Распределение токов по ветвям электрической цепи подчиняется первому закону Кирхгофа, а распределение напряжений по участкам цепи подчиняется второму закону Кирхгофа.

Законы Кирхгофа наряду с законом Ома являются основными в теории электрических цепей.

Первый закон Кирхгофа:

Алгебраическая сумма токов в узле равна нулю:

SIi = 0 (19)

Где i - число ветвей, сходящихся в данном узле.

Т.е., суммирование распространяется на токи в ветвях, которые сходятся в рассматриваемом узле.

Распределение потенциала вдоль участка ветви. Потенциальная диаграмма - student2.ru

Рис.17. Иллюстрация к первому закону Кирхгофа.

Число уравнений, составляемых по первому закону Кирхгофа, определяется формулой:

Nуp = Nу – 1,

Где Nу – число узлов в рассматриваемой цепи.

Знаки токов в уравнении берутся с учетом выбранного положительного направления. Знаки у токов одинаковы, если токи одинаково ориентированы относительно данного узла.

Например, для узла, представленного на рис.17: припишем токам, подтекающим к узлу знаки «+», а к токам, оттекающим от узла – знаки «-».

Тогда уравнение по первому закону Кирхгофа запишется так:

I1 – I2 + I3 – I4 = 0.

Уравнения, составленные по первому закону Кирхгофа, называются узловыми.

Этот закон выражает тот факт, что в узле электрический заряд не накапливается и не расходуется. Сумма электрических зарядов, приходящих к узлу, равна сумме зарядов, уходящих от узла за один и тот же промежуток времени.

Второй закон Кирхгофа:

Алгебраическая сумма э.д.с. в любом замкнутом контуре цепи равна алгебраической сумме падений напряжения на элементах этого контура:

S Ui = S Ei

S IiRi = S Ei (20)

Где i – номер элемента(сопротивления или источника напряжения) в рассматриваемом контуре.

**Число уравнений, составляемых по второму закону Кирхгофа, определяется формулой:

Nуp = Nb – Nу + 1 – Nэ.д.с.

Где Nb – число ветвей электрической цепи;

Nу - число узлов;

Nэ.д.с. - число идеальных источников э.д.с.

Распределение потенциала вдоль участка ветви. Потенциальная диаграмма - student2.ru

Рис.18. Иллюстрация ко второму закону Кирхгофа.

Для того, чтобы правильно записать второй закон Кирхгофа для заданного контура, следует выполнять следующие правила:

1. произвольно выбрать направление обхода контура, например, по часовой стрелке (рис.18).

2. э.д.с. и падения напряжения, которые совпадают по направлению с выбранным направлением обхода, записываются в выражении со знаком «+»; если э.д.с. и падения напряжения не совпадают с направлением обхода контура, то перед ними ставится знак «-».

Например, для контура рис.18, второй закон Кирхгофа запишется следующим образом:

U1 – U2 + U3 = E1 – E3 – E4 (21)

Уравнение (20) можно переписать в виде:

S (Ui – Ei) = 0 (22)

Где (U – E) – напряжение на ветви.

Следовательно, второй закон Кирхгофа можно сформулировать следующим образом:

Алгебраическая сумма напряжений на ветвях в любом замкнутом контуре равна нулю.

Потенциальная диаграмма, рассмотренная ранее, служит графической интерпретацией второго закона Кирхгофа.

Задача №1.

В схеме рис.1 заданы токи I1 и I3, сопротивления и э.д.с. Определить токи I4, I5, I6 ; напряжение между точками a и b, если I1 = 10мA, I3 = -20 мA, R4 = 5kОм, E5 = 20B, R5 = 3kОм, E6 = 40B, R6 = 2kОм.

.

Распределение потенциала вдоль участка ветви. Потенциальная диаграмма - student2.ru

Рис.1

Решение:

1. Для заданного контура составим два уравнения по первому закону Кирхгофа и одно – по второму. Направление обхода контура указано стрелкой.

Распределение потенциала вдоль участка ветви. Потенциальная диаграмма - student2.ru

В результате решения получаем: I6 = 0; I4 = 10мA; I5 = -10мA

2. зададим направление напряжения между точками a и b от точки «a» к точке «b» - Uab. Это напряжение найдем из уравнения по второму закону Кирхгофа:

I4R4 + Uab + I6R6 = 0

Uab = - 50B.

Задача №2.

Для схемы рис.2 составить уравнения по законам Кирхгофа и определить неизвестные точки.

Дано: I1 = 20мA; I2 = 10мA

R1 = 5kОм, R3 = 4kОм, R4 = 6kОм, R5 = 2kОм, R6 = 4kОм.

Распределение потенциала вдоль участка ветви. Потенциальная диаграмма - student2.ru

Рис.2

Решение:

Число узловых уравнений – 3, число контурных уравнений – 1.

Запомнить! При составлении уравнения по второму закону Кирхгофа выбираем контур, в который не входят источники тока. Направление контура указано на рисунке.

В данной цепи известны токи ветвей I1 и I2. Неизвестные токи I3, I4, I5, I6.

Распределение потенциала вдоль участка ветви. Потенциальная диаграмма - student2.ru

Решая систему, получаем: I3 = 13,75 мA; I4 = -3,75мA; I5 = 6,25мA; I6 = 16,25мA.

Наши рекомендации