Теплопроводность плоской, цилиндрической и сферической стенок при стационарном режиме
Рисунок 7.3 – К выводу уравнения теплопроводности плоской стенки |
Теплопроводность плоской стенки. Тепловой поток перемещается через плоскую стенку толщиной δ (рис. 7.3) из однородного материала, имеющего коэффициент теплопроводности .
На наружной поверхности стенки поддерживаются постоянные температуры и ( > ). Температура изменяется только в направлении оси х, перпендикулярной плоскости стенки, т.е. температурное поле одномерно, а изотермические поверхности плоские и располагаются перпендикулярно оси х.
В соответствии с дифференциальным уравнением теплопроводности (7.23) .
В результате интегрирования этого выражения получим:
.
Таким образом, температура по толщине плоской стенки при установившемся тепловом режиме изменяется линейно, а градиент температуры сохраняет постоянное значение.
Константы интегрирования и определяют из граничных условий:
При , следовательно ;
При ,
либо
.
С учетом найденных констант:
. (7.25)
Дифференцируя последнее уравнение, имеем: .
Подставив найденные значения температурного градиента в уравнение, выражающее основной закон теплопроводности (7.12), получим уравнение теплопроводности для плоской стенки при стационарном режиме:
, (7.26)
либо
.
Рисунок 7.4 – К выводу уравнения теплопроводности плоской многослойной стенки |
Отношение (l/d) носит название тепловой проводимости стенки, а (d/l) – термического сопротивления стенки.
Если стенка многослойная(рис. 7.4), состоит из n слоев толщиной с коэффициентами теплопроводности соответственно, при этом температуры наружных поверхностей и , а температуры на границе слоев , то при установившемся тепловом режиме тепловой поток Q, проходящий через каждый слой, одинаков и уравнение теплопроводности для каждого из них может быть выражено уравнением (7.26):
для 1-го слоя , или ;
для 2-го слоя , или ; (7.27)
для n-го слоя , или .
Складывая левые и правые части выражение (7.27), получим уравнение теплопроводности плоской многослойной стенки для стационарного режима:
либо
, (7.28)
где i – порядковый номер слоя.
Таким образом, общее термическое сопротивление плоской многослойной стенки равно сумме термических сопротивлений отдельных слоев стенки при условии, что слои плотно прилегают друг к другу. Внутри каждого слоя линия изменения температуры (рис. 7.4) – прямая, но для многослойной стенки в целом она представляет собой ломаную линию.
Рисунок 7.5 – К выводу уравнения теплопроводности цилиндрической стенки |
Теплопроводность цилиндрической стенки. В однородной цилиндрической стенке длиной L (рис. 7.5) температура в случае одномерного стационарного поля изменяется только в радиальном направлении, поэтому для поверхности произвольного радиуса r уравнение Фурье можно представить в виде
. (7.29)
Для кольцевого слоя с радиусом r и толщиной dr, выделенного внутри стенки (рис. 7.5), при внутреннем и наружном радиусах соответственно r1 и r2 и температурах на внутренней и наружной поверхностях стенки и , согласно уравнению (7.29) имеем:
.
В результате интегрирования последнего выражения получим:
(7.30)
либо .
Если учесть, что ( и – наружный и внутренний диаметры цилиндра соответственно), то:
. (7.31)
Уравнения (7.30) и (7.31) являются уравнениями теплопроводности цилиндрической стенки при установившемся процессе теплообмена. Они показывают, что по толщине цилиндрической стенки (в отличие от плоской) температура изменяется криволинейно – по логарифмическому закону. При этом влияние кривизны стенки учитывается коэффициентом кривизныφ, значение которого определяется отношением диаметров . При < 2 значение φ близко к единице, а это значит, что влиянием кривизны стенки в этом случае можно пренебречь и тогда расчет теплопроводности тонкостенных цилиндров (труб) можно производить по формулам для плоской стенки.
Для многослойной цилиндрической стенки, состоящей из n слоев (плотно прилегающих друг к другу), по аналогии с выводом, приведенным для однослойной стенки:
, (7.32)
где i – порядковый номер слоя стенки.
В многослойной цилиндрической стенке температура внутри каждого слоя изменяется по логарифмическому закону, но для всей стенки в целом температурная линия представляет собой ломаную кривую (рис. 7.6).
Температуры прилегающих слоев в случае необходимости могут быть рассчитаны из равенств:
. (7.33)
Теплопроводность сферической стенки.Стенка полого шара состоит из однородного материала, коэффициент теплопроводности которого постоянен и равен . Внутренняя и внешняя поверхности шара поддерживаются при постоянных температурах и . Температура изменяется только в направлении радиуса шара, изотермические поверхности представляют собой концентрические шаровые поверхности. Радиусы внутренней и внешней поверхности соответственно r1 и r2 (рис. 7.7).
Рисунок 7.6 – Теплопроводность многослойной цилиндрической стенки | Рисунок 7.7 – К выводу уравнения теплопроводности сферической стенки |
В соответствии с законом Фурье количество тепла, проходящее через шаровой слой толщиной dr и радиусом r
. (7.34)
В результате разделения переменных и интегрирования этого выражения в соответствующих пределах, получим:
,
откуда
, (7.35)
где и – диаметры внутренней и внешней поверхности соответственно.
Уравнения (7.35) являются расчетными формулами теплопроводности сферической стенки. Как следует из них, при = сonst температура в сферической стенке меняется по закону гиперболы.
По аналогии с плоской и цилиндрической стенками для многослойной сферической стенки
. (7.36)
Тепловое излучение
В тепловых процессах одновременно с теплопроводностью и конвекцией почти всегда наблюдается и тепловое излучение, причем, чем выше температура тела, отдающего тепло, тем большее количество тепла передается в виде лучистой энергии.
Тепловое излучение представляет собой процесс распространения внутренней энергии излучающего тела путем электромагнитных волн. При поглощении электромагнитных волн какими-либо другими телами они вновь превращаются в энергию теплового движения молекул. Источниками электромагнитных волн являются заряженные материальные частицы, т.е. электроны и ионы, входящие в состав вещества. По своей природе тепловое излучение аналогично излучению света, оба они представляют собой один вид энергии – лучистой – и подчиняются одним и тем же законам отражения, преломления и поглощения. Соответственно этому тепловое излучение характеризуется длиной волны. Однако в отличие от видимых световых лучей, имеющих длину волн 0,4÷0,8 мкм, длина волн теплового излучения лежит в основном в невидимой (инфракрасной) части спектра и составляет 0,8÷40 мкм.
Все тела излучают и поглощают лучистую энергию непрерывно. Интенсивность излучения зависит от природы тела, его температуры, длины волны, состояния поверхности, а для газов – еще от толщины слоя и давления. Твердые и жидкие тела имеют значительные поглощательную и излучательную способности. Вследствие этого в процессах лучистого теплообмена участвуют лишь тонкие поверхностные слои. Поэтому в этих случаях тепловое излучение приближенно можно рассматривать как поверхностное явление. Газы и пары характеризуются объемным характером излучения, в котором участвуют все частицы объема вещества. Излучение всех тел зависит от температуры. С увеличением температуры тела его энергия излучения увеличивается, так как увеличивается внутренняя энергия тела. При этом изменяется не только значение этой энергии, но и спектральный состав. При увеличении температуры повышается интенсивность коротковолнового излучения и уменьшается интенсивность длинноволнового излучения. В процессах излучения зависимость от температуры значительно большая, чем в процессах теплопроводности и конвекции. Вследствие этого при высоких температурах основным видом переноса тепла может быть тепловое излучение.
Лучистая энергия распространяется в однородной и изотропной среде прямолинейно. В отличие от теплопроводности и конвекции, лучистый теплообмен происходит не только между соприкасающимися, но и между удаленными друг от друга телами. Поток лучей, испускаемый нагретым телом, попадая на поверхность другого лучеиспускающего тела, частично поглощается, частично отражается (при этом угол падения равен углу отражения) и частично проходит сквозь тело без изменений, т.е.
; (7.37)
то есть ,
где – общая энергия падающих на тело лучей; – энергия, поглощенная телом; – энергия, отраженная от поверхности тела; – энергия лучей, проходящих сквозь тело без изменений.
Таким образом, отношения , и характеризуют поглощательную, отражательную и пропускательную способности тела. Если тело полностью поглощает падающую на него лучистую энергию, т.е. , а и равны нулю, то оно носит название абсолютно черного. При полном отражении телом лучистой энергии, , а , такие тела называют абсолютно белыми. Наконец, если тело пропускает все падающие на него лучи, не поглощая их и не отражая, , а , его называют абсолютно прозрачным или диатермичным.
В природе не существует абсолютно черных, абсолютно белых и абсолютно прозрачных тел. Все тела в той или иной степени поглощают, отражают и пропускают сквозь себя падающие на них лучи, т.е. являются серыми. Однако твердые тела и жидкости практически непрозрачны для тепловых лучей, а большинство газов, наоборот, диатермичны.
Основные законы излучения
Закон Стефана-Больцмана. Количество тепла, излучаемого единицей поверхности тела в единицу времени, называют лучеиспускательной способностью тела Е, Вт/м2 :
. (7.38)
Как указывалось ранее, энергия излучения зависит от длины волн и температуры Т. Характеристикой энергии излучения по длинам волн служит интенсивность излучения I – лучеиспускательная способность тела в интервале длин волн от до + d , отнесенная к этому интервалу d , т.е.
. (7.39)
Лучеиспускательная способность тела E является интегральной характеристикой, которая учитывает энергию излучения волн всех длин от λ = 0 до λ = ∞.
Следовательно,
. (7.40)
На основании электромагнитной теории света Планком аналитически была определена функциональная зависимость интенсивности излучения I0 от температуры и длины волн для абсолютно черного тела. Согласно этой зависимости
, (7.41)
где c1 – константа, равная 3,74∙10–16 Вт/м2; с2 – константа, равная 1,44∙10–2 (м∙К).
Интегрирование выражения (7.40) с учетом (7.41) дает зависимость для определения лучеиспускательной способности абсолютно черного тела Е0:
, (7.42)
где к0 – константа излучения абсолютно черного тела,
к0 = 5,67∙10–8 Вт/(м2∙К4).
Зависимость (7.42) носит название закона Стефана–Больцмана, так как была найдена экспериментально Стефаном и подтверждена Больцманом до того, как Планк вывел соотношение (7.41).
Таким образом, согласно закону Стефана–Больцмана, лучеиспускательная способность абсолютно черного тела пропорциональна четвертой степени его абсолютной температуры.
При проведении технических расчетов выражение (7.42) удобнее использовать в виде
, (7.43)
где С0 – коэффициент излучения абсолютно черного тела, равный С0 = k0∙108 = 5,67 Вт/(м2∙К4).
Исследования показали, что закон Стефана-Больцмана применим не только к абсолютно черным телам, но и к серым. В этом случае его записывают в виде
(7.44)
(C по аналогии с абсолютно черным телом называют коэффициентом излучения серых тел).
Отношение коэффициентов излучения данного тела и абсолютно черного С/С0 = e носит название относительной излучательной способности или степени черноты данного тела. С учетом этого понятия закон Стефана-Больцмана принимает вид
. (7.45)
Рисунок 7.8 – К выводу закона Кирхгофа |
Закон Кирхгофа устанавливает соотношение между лучеиспускательной и поглощательной способностями тел. Это соотношение может быть получено из рассмотрения процесса обмена лучистой энергией между абсолютно черным и серым телами (рис. 7.8).
Поверхности рассматриваемых тел параллельны и расположены на расстоянии, при котором излучение каждого из тел попадает на другое. Абсолютно черное тело имеет температуру T0, лучеиспускательную способность E0 и поглощательную A0 = 1, серое тело имеет соответственно Т, Е и А, при этом Т > T0. Излучение Е попадает на абсолютно черное тело и целиком им поглощается. Излучение E0 попадает на серое тело. При этом часть этого излучения, равная E0А, поглощается, а другая часть, равная E0(1 – А), отражается на абсолютно черное тело и поглощается им. В результате этого обмена абсолютно черное тело получает суммарное количество энергии:
. (7.46)
При выравнивании температур обоих тел наступает тепловое равновесие, при котором Q = 0, т.е. . Следовательно,
. (7.47)
Последнее соотношение является математическим выражением закона Кирхгофа, согласно которому отношение лучеиспускательной способности тел к их поглощательной способности для всех тел одинаково, равно лучеиспускательной способности абсолютно черного тела при той же температуре и зависит только от температуры.
В результате подстановки значений E и E0 из равенств (7.44) и (7.45) в соотношение (7.47) получаем
. (7.48)
Рисунок 7.9 – К формулировке закона Ламберта |
Так как , то , т.е. способность тела к поглощению излучения численно равна степени его черноты. Учитывая, что e и A изменяются в пределах от 0 до 1, из равенства (7.47) следует, что лучеиспускательная способность реального тела всегда меньше лучеиспускательной способности абсолютно черного тела при той же температуре.
Закон Ламбертаопределяет изменение интенсивности излучения по различным направлениям. Согласно этому закону излучение энергии элементом поверхности в направлении элемента (рис. 7.9) пропорционально излучению dQ (по направлению нормали к ), телесному углу dψ (под которым виден элемент из элемента ) и косинусу угла φ, образованного прямой, соединяющей элементы и , и нормалью к элементу .
При этом лучеиспускательная способность в направлении нормали в p раз меньше полной лучеиспускательной способности тела.
Таким образом, количество энергии, излучаемой элементом в направлении элемента :
. (7.49)