Прогнозирование, основанное на методах математической статистики
Можно выделить два метода разработки прогнозов, основанных на методах математической статистики: экстраполяцию и моделирование.
В первом случае в качестве базы прогнозирования используется прошлый опыт, который пролонгируется на будущее. Делается предположение, что система развивается эволюционно в достаточно стабильных условиях. Чем крупнее система, тем более вероятно сохранение ее параметров без изменения — конечно, на срок, не слишком большой. Обычно рекомендуется, чтобы срок прогноза не превышал одной трети длительности расчетной временной базы.
Во втором случае строится прогнозная модель, характеризующая зависимость изучаемого параметра от ряда факторов, на него влияющих. Она связывает условия, которые, как ожидается, будут иметь место, и характер их влияния на изучаемый параметр.
Данные модели не используют функциональные зависимости; они основаны только на статистических взаимосвязях.
Возникает вопрос: как еще до наступления будущего оценить точность прогнозных оценок? Для этого обычно расчеты по выбранной прогнозной модели сравнивают с данными, полученными в прошлом, и для каждого момента времени определяют различие оценок. Затем определяется средняя разность оценок, скажем, среднее квадратическое отклонение. По его величине определяется прогнозная точность модели.
При построении прогнозных моделей чаще всего используется парный и множественный регрессионный анализ; в основе экстраполяционных методов лежит анализ временных рядов.
Парный регрессионный анализ основан на использовании уравнения прямой линии (см. формулу 4.3). В дополнение к изложенному следует сказать следующее.
Коэффициент парной линейной регрессии b имеет смысл тесноты связи между вариацией факторного признака х и вариацией результативного признака у.
При проведении регрессионного анализа следует не только рассчитать коэффициенты а и b, но и провести их испытание на статистическую значимость, т.е. определить, насколько выборочные значения а и b отличаются от их значений для генеральной совокупности. Для этого используется t — критерий Стъюдента [10].
При использовании уравнения регрессии в целях прогнозирования надо иметь в виду, что перенос закономерности связи, измеренной в варьирующей совокупности, в статике на динамику не является, строго говоря, корректным и требует проверки условий допустимости такого переноса (экстраполяции), что выходит за рамки статистики и может быть сделано только специалистом, хорошо знающим объект исследования и возможности его развития в будущем.
Ограничением прогнозирования на основе регрессионного уравнения, тем более парного, служит условие стабильности или по крайней мере малой изменчивости других факторов и условий изучаемого процесса, не связанных с ними. Если резко изменится «внешняя среда» протекающего процесса, прежнее уравнение регрессии результативного признака на факторный потеряет свое значение.
Следует соблюдать еще одно ограничение: нельзя подставлять значения факторного признака, существенно отличающиеся от входящих в базисную информацию, по которой вычислено уравнение регрессии. При качественно иных уровнях фактора, если они даже возможны в принципе, были бы иными параметры уравнения. Можно рекомендовать при определении значений факторов не выходить за пределы трети размаха вариации как за минимальное, так и за максимальное значения признака-фактора, имеющиеся в исходной информации.
Прогноз, полученный подстановкой в уравнение регрессии ожидаемого значения фактора, называют точечным прогнозом. Вероятность точной реализации такого прогноза крайне мала. Необходимо сопроводить его значение средней ошибкой прогноза или доверительным интервалом прогноза, в который с достаточно большой вероятностью попадают прогнозные оценки. Средняя ошибка является мерой точности прогноза на основе уравнения регрессии.
Расчет доверительного интервала осуществляется аналогично ранее рассмотренному подходу. Выбирается один из уровней доверительности (95 или 99%) и рассчитываются максимальные и минимальные прогнозные оценки. Данные расчета говорят о том, что если прогнозные оценки с помощью уравнения регрессии будут получены много раз и каждый раз будет известна также фактическая оценка, то фактические оценки будут попадать в рассчитанный диапазон прогнозных оценок в 95 или 99% случаев.
Анализ на основе множественной регрессии основан на использовании более чем одной независимой переменной в уравнении регрессии. Это усложняет анализ, делая его многомерным. Однако регрессионная модель более полно отражает действительность, так как в реальности исследуемый параметр, как правило, зависит от множества факторов.
Так, например, при прогнозировании спроса идентифицируются факторы, определяющие спрос, определяются взаимосвязи, существующие между ними, и прогнозируются их вероятные будущие значения; из них при условии реализации условий, для которых уравнение множественной регрессии остается справедливым, выводится прогнозное значение спроса.
Все, что касается множественной регрессии, концептуально является идентичным парной регрессии, за исключением того, что используется более чем одна переменная. Под этим углом зрения слегка изменяются терминология и статистические расчеты.
Многофакторное уравнение множественной регрессии имеет следующий вид:
Термин «коэффициент условно-чистой регрессии» означает, что каждая из величин b измеряет среднее по совокупности отклонение зависимой переменной (результативного признака) от ее средней величины при отклонении зависимой переменной (фактора) х от своей средней величины на единицу ее измерения и при условии, что все прочие факторы, входящие в уравнение регрессии, закреплены на средних значениях, не изменяются, не варьируются.
Таким образом, в отличие от коэффициента парной регрессии коэффициент условно-чистой регрессии измеряет влияние фактора, абстрагируясь от связи вариации этого фактора с вариацией остальных факторов. Если было бы возможным включать в уравнение регрессии все факторы, влияющие на вариацию результативного признака, то величины b можно было бы считать мерами чистого влияния факторов. Но так как реально невозможно включить все факторы в уравнение, то коэффициенты b не свободны от примеси влияния факторов, не входящих в уравнение.
Многофакторная система требует уже не одного, а множества показателей тесноты линейных связей, имеющих разный смысл и применение. Основой измерения связей является матрица парных коэффициентов корреляции.
На основе этой матрицы можно судить о тесноте связи факторов с результативным признаком и между собой. Хотя показатели матрицы относятся к парным связям, все же матрицу можно использовать для предварительного отбора факторов для включения в уравнение регрессии. Не рекомендуется включать в уравнение факторы, слабо связанные с результативным признаком, но тесно связанные (коллинеарные) с другими факторами (по условию факторные признаки в уравнении множественной корреляции не должны быть связаны друг с другом). Совершенно недопустимо включать в анализ факторы, функционально связанные друг с другом, т.е. с коэффициентом корреляции, равным единице.
На основе матрицы парных коэффициентов вычисляется наиболее общий показатель тесноты связи всех входящих в уравнение регрессии факторов с результативным признаком — коэффициент множественной детерминации [10].
Помимо целей прогнозирования множественная регрессия может использоваться для отбора статистически значимых независимых факторов, которые следует использовать при исследовании результативного признака. В частности, при поиске критериев сегментации исследователь может использовать регрессионный анализ для выделения демографических факторов, которые оказывают наиболее сильное влияние на какой-то результирующий показатель, характеризующий поведение покупателей, например выбор товара определенной марки.
Кроме того, множественная регрессия может использоваться для определения относительной важности независимых переменных.
Поскольку независимые переменные имеют различные размерности, проводить их сравнение прямым образом нельзя. Например, нельзя прямым образом сравнивать коэффициенты b для размера семьи и величины среднего для семьи дохода.
Обычно в данном случае поступают следующим образом. Делят каждую разницу между независимой переменной и ее средней на среднее квадратическое отклонение для этой независимой переменной. Далее возможно прямое сравнение полученных величин (коэффициентов). Чем больше абсолютная величина коэффициентов, тем большей относительной важностью, влиянием на результирующий прогнозируемый показатель обладают переменные величины, которые характеризуют данные коэффициенты.
Многие данные маркетинговых исследований представляются для различных интервалов времени, например на ежегодной, ежемесячной и другой основе. Такие данные называютсявременными рядами. Анализ временных рядов направлен на выявление трех видов закономерностей изменения данных: трендов, цикличности и сезонности.
Тренд характеризует общую тенденцию в изменениях показателей ряда. Те или иные качественные свойства развития выражают различные уравнения трендов: линейные, параболические, экспоненциальные, логарифмические, логистические и др. После теоретического исследования особенностей разных форм тренда необходимо обратиться к фактическому временному ряду, тем более что далеко не всегда можно надежно установить, какой должна быть форма тренда из чисто теоретических соображений. По фактическому динамическому ряду тип тренда устанавливают на основе графического изображения, путем осреднения показателей динамики, на основе статистической проверки гипотезы о постоянстве параметра тренда.
В табл. 7.1 приводятся данные объема продаж велосипедов определенной компании за 17 лет.
Таблица 7.1
Объем продажи велосипедов
Продолжение табл. 7.1
Необходимо определить прогнозную оценку объема продаж на восемнадцатый год.
Представив в графическом виде данные табл. 7.1, можно с помощью метода наименьших квадратов подобрать прямую линию, в наибольшей степени соответствующую полученным данным (рис. 7.1), и определить прогнозную величину объема продаж.
В то же время более внимательное рассмотрение рис. 7.1 позволяет сделать вывод о том, что не все точки близко расположены к прямой. Особенно эти расхождения велики для последних лет, а верить последним данным, видимо, следует с достаточным основанием.
В данном случае можно применить метод экспоненциального сглаживания, назначая разные весовые коэффициенты (большие для последних лет) данным для разных лет [10], [25]. В последнем случае прогнозная оценка в большей степени соответствует тенденциям последних лет.
Циклический характер колебаний статистических показателей характеризуется длительным периодом (солнечная активность, урожайность отдельных культур, экономическая активность). Такие явления, как правило, не являются предметом исследования маркетологов, которых обычно интересует динамика проблемы на относительно коротком интервале времени.
Сезонные колебания показателей имеют регулярный характер и наблюдаются в течение каждого года. Они и являются предметом изучения маркетологов (спрос на газонокосилки, на отдых в курортных местах в течение года, на телефонные услуги в течение суток и т.д.). Поскольку выявленные закономерности носят регулярный характер, то их вполне обоснованно можно использовать в прогнозных целях.
В отличие от прогноза на основе регрессионного уравнения прогноз по тренду учитывает факторы развития только в неявном виде, и это не позволяет «проигрывать» разные варианты прогнозов при разных возможных значениях факторов, влияющих на изучаемый признак. Зато прогноз по тренду охватывает все факторы, в то время как в регрессионную модель в лучшем случае невозможно включить в явном виде более 10—20 факторов.
Временные ряды помимо простой экстраполяции могут использоваться также в целях более глубокого прогнозного анализа, например объема продаж. Целью анализа в данном случае являются разложение временного ряда продаж на главные компоненты, измерение эволюции каждой составляющей в прошлом и ее экстраполяция на будущее. В основе метода лежит идея стабильности причинно-следственных связей и регулярности эволюции факторов внешней среды, что делает возможным использование экстраполяции. Метод состоит в разложении временного ряда на пять компонент:
— структурная компонента, или долгосрочный тренд, обычно связанный с жизненным циклом товара на исследуемом рынке;
— циклическая компонента, соответствующая колебаниям относительно долгосрочного тренда под воздействием среднесрочных флуктуаций экономической активности;
— сезонная компонента, или краткосрочные периодические флуктуации, обусловленные различными причинами (климат, социально— психологические факторы, структура нерабочих дней и т.д.);
— маркетинговая компонента, связанная с действиями по продвижению товара, временными снижениями цен и т.п.;
— случайная компонента, отражающая совокупное действие плохо изученных процессов, непредставимых в количественной форме.
Для каждой компоненты рассчитывается параметр, основанный на наблюдавшихся закономерностях: долгосрочном темпе прироста продаж, конъюнктурных флуктуациях, сезонных коэффициентах, специфичных факторах (демонстрации, мероприятия по стимулированию сбыта и т.п.). Затем эти параметры используют для составления прогноза.
Понятно, что такой прогноз имеет смысл как краткосрочный, на период, в отношении которого можно принять, что характеристики изучаемого явления существенно не изменятся. Это требование часто оказывается реалистичным вследствие достаточной инерционности внешней среды.
К числу главных ограничений экстраполяционных методов следует отнести следующие.
Большинство прогнозных ошибок связано с тем, что в момент формулирования прогноза в более или менее явной форме подразумевалось, что существующие тенденции сохранятся в будущем, что редко оправдывается в реальной экономической и общественной жизни.
Так, в 40-х годах нашего века американские специалисты предсказывали: производство легковых автомобилей в США достигнет насыщения и будет составлять 300 000 штук в месяц. Но уже в 1969 г. их в США производилось более 550 000 штук. В настоящее время эта цифра возросла еще в 1,2—1,3 раза.
В 1983—1984 гг. на американский рынок были введены 67 новых моделей персональных компьютеров, и большинство фирм рассчитывало на взрывной рост этого рынка. По прогнозам, которые давали в то время маркетинговые фирмы, число установленных компьютеров в 1988 г. должно было составить от 27 до 28 миллионов. Однако к концу 1986 г. было поставлено только 15 миллионов, поскольку условия использования компьютеров радикально изменились, а этого никто не предвидел.
Эти ошибки в прогнозах носили не математический, а чисто логический характер: ведь при прогнозировании использовались временные ряды, достаточно хорошо отражающие имеющийся в то время статистический материал.
Развитие общества определяется очень большим числом факторов. Эти факторы сильно связаны между собой, и далеко не все они поддаются непосредственному измерению. Кроме того, по мере развития общества порой неожиданно начинают вступать в действие все новые и новые факторы, которые раньше не учитывались.
Временные ряды могут становиться ненадежной основой для разработки прогнозов по мере того, как экономика приобретает все более международный характер и все в большей степени подвергается крупной технологической перестройке. В связи с этим необходимо в первую очередь развивать способности предвидения, что подразумевает хорошее знание ключевых факторов и оценку чувствительности фирмы к внешним угрозам.
Вышеназванное ни в коей мере не умаляет значимости экстрополяционных методов в прогнозировании. Как и любые методы, их надо уметь использовать. Прежде всего экстраполяционные методы следует применять для относительно краткосрочного прогнозирования развития достаточно стабильных, хорошо изученных процессов. Прогнозный период времени не должен превышать 25—30% от исходной временной базы. При использовании уравнений регрессии прогнозные расчеты следует проводить для оптимистических и пессимистических оценок исходных параметров (независимых переменных), получая таким образом оптимистические и пессимистические оценки прогнозируемого параметра. Реальная прогнозная оценка должна находиться между ними.
В ряде случаев прогнозную оценку, полученную на основе экстраполяционных методов, используют как индикатор желательности получения определенной величины прогнозируемого параметра. Предположим, что была получена прогнозная оценка величины спроса на какой-то товар. Она говорит о том, что при тех же условиях внешней среды, структуре и силе действия исходных факторов величина спроса к определенному моменту времени достигнет такой-то величины. Менеджерам, которые используют результаты данного прогноза, следует ответить на вопрос: «А устраивает ли нас данная величина спроса?» Если «да», то надо приложить максимум усилий, чтобы все сохранить без изменения. Если «нет», то необходимо использовать внутренние возможности (например, провести дополнительную рекламную компанию) и постараться повлиять на определенные факторы внешней среды, поддающиеся косвенному воздействию (например, повлиять на деятельность посредников, пролоббироавть изменение определенных тарифов, импортных пошлин). Вся эта деятельность направлена на обеспечение получения желаемой величины спроса.