Проверка совместного действия нормальных, касательных и местных напряжений в месте изменения сечения.
Расчетные нормальные и касательные напряжения в краевом участке стенки балки на уровне поясных швов:
Ϭ1 = * = * = 19.79 кН/см2
= 26*2* = 4186 см3
= 2.78 кН/см2
Приведенное напряжение в крайних точках стенки на уровне поясных швов:
= = 20,37 кН/см2 ≤ 1,15Ryγc = 27.6 кН/cм2
Проверка общей устойчивости балки.
Определяем отношение, при котором можно не проверять устойчивость:
1) В середине пролета балки (балка работает упруго δ = 1)
= δ[0.41 + 0.0032 + (0.73 – 0.016 ) ] = 1*[0.41 + 0.0032 + (0.73 – 0.016 ) ] = 17,00≥
2) В месте уменьшенного сечения балки (балка работает упруго δ =1)
= 1*[0.41 + 0.0032 + (0.73 – 0.016 ) ] = 15,69 ≥
Проверку прогиба балки можно не производить, так как принятая высота балки больше минимальной.
Проверка и обеспечение местной устойчивости элементов балки.
1. Проверка устойчивости сжатого пояса
Производится в месте максимальных нормальных напряжений в нем – в середине пролета балки, где возможны пластические деформации:
Условие обеспечения устойчивости пояса имеет вид:
≤ 0.5
= ½(
= = 10.2 < 0,5 = 14.65
2. Устойчивость стенки
Проверяем необходимость укрепления стенки поперечными ребрами жесткости:
Следовательно, поперечные ребра жесткости необходимы.
Конструкция ребер жесткости:
Расстояние между поперечными ребрами жесткости не должно превышать
2
Расстояние между поперечными ребрами жесткости должно быть a < 2
Принимаю односторонние ребра жесткости, располагая их с одной стороны балки. При этом ширина ребер жесткости должна быть не менее:
+ 50 =
Принимаю ширину ребер жесткости
Толщина ребер жесткости должна быть не менее
= = 8,19 мм
Принимаем толщину ребер жесткости
Проверяем устойчивость стенки в зоне действия наибольших нормальных напряжений.
Значение напряжений на уровне поясных швов :
Т.к отношение a/ = 250/159 = 1.57 > 1.33
Проводим 2 проверки, но в этом случае во 2ой проверке a заменяем на a1 = 0.67a
1ая проверка:
Определяем критические нормальные напряжения
Коэффициент, учитывающий степень упругого защемления стенки в поясах балки и определяемый по формуле:
Интерполяцией получаем
см2
р = 1,04 =1.04 * – относительная длина загружения пластины местной нагрузкой
= 18 см
b – длина передачи местной нагрузки на балку ( ширина полки балки настила)
С1 = 13,68
С2 = 1,98
Далее определяем =
Местные напряжения в стенке под балками:
= = 7.85
Проверяем условие устойчивости (при
2я проверка:
a1 = 0.67a = 0.67*2500 = 1675 мм
Тогда
Ccr = 32.976
см2
p = 0.13 a1/hст = 1,05
С1 = 17,96
С2 = 1,786
=
Проверяем условие устойчивости (при
Стенка в середине пролета устойчива.
Рассмотрим сечение, расположенное вблизи от опоры балки на расстоянии
Х = hw/2 = 159/2 = 79.5 см
M1 = = = 967.81 кНм
Q1 = q(L-x) = 171.4(15/2 – 0.795) = 1149.24 кН
= 4.49 кН/см2
Местные напряжения в стенке под балками
= = 7.85 кН/см2
= = 0.4
р = 1,04 =1.04 *
С1 = 13,68
С2 = 1,8
= = 38.74 кН/см2
=
= = 1.57
= = 4.52
Определяем критические касательные напряжения
= 10.3(1 + ) = 8.93 кН/см2
Приведенные проверки показали, что запроектированная балка удовлетворяет требованиям прочности, прогиба, общей и местной устойчивости.