Образец выполнения курсового проекта «Балочная клетка рабочей площадки»
Образец выполнения курсового проекта «Балочная клетка рабочей площадки»
Исходные данные:
- шаг колонн в продольном направлении L=12 м
- шаг колонн в поперечном направлении B=5 м
- нормативная временная нагрузка рn =18 кПа
- материал настила С235
- материал главной балки С255
- материал балок настила С245
- класс бетона фундамента В10
-отметка верха настила 6,5 м
- строительная высота перекрытия 1,6 м
Коэффициент надёжности по временной нагрузке 𝛾fp=1,2.
Предельный относительный прогиб настила
Предельный относительный прогиб балки настила
Рассмотрим два варианта компоновки балочной клетки рабочей площадки: первый – нормальный тип, второй – усложненный тип.
Вариант 1. Нормальный тип балочной клетки
Рисунок 4.1 Нормальный тип балочной клетки
Расстояние между балками настила определяется несущей способностью настила и обычно принимается равным 0,6 – 1,6 м при стальном настиле. Определим максимальное и минимальное количество шагов балок настила
Принимаем количество шагов балок настила
n =10 дана.
Тогда длина шагов балок настила а1 будет равна
Вычисляем соотношение максимального пролета настила к его толщине
Здесь
При нормативной нагрузке 11÷20 кН/м2 толщина настила должна быть в пределах tн=8÷10 мм. Поэтому толщину настила принимаем равным tн=10 мм. Тогда максимальный пролёт настила
Определяем вес настила, зная что 1 м2 стального листа толщиной 10 мм весит 78,5 кг
78,5·1,0 = 78,5 кг/м2 0,785 кН/м2.
Нормативная нагрузка на балку настила
Расчетная нагрузка на балку настила
Расчетный изгибающий момент (при ℓ= b = 5 м)
Мmax=qℓ2/8 = 26,91· 52/8 = 84,09 кНм = 8409 кНсм
Требуемый момент сопротивления балки
По сортаменту принимаем двутавр №27 Wx=371 см3, g=31,5кг/м , Ix=5010 см4, b=125мм.
Проверяем только прогиб, так как W = 371 см3 > Wтр = 318,52 см3
Проверяем условие жёсткости
1,77 <
Определим фактический пролёт настила (расстояние между полками балок настила в свету)
Принятое сечение балки удовлетворяет условиям прочности и прогиба. Проверку касательных напряжений прокатных балках при отсутствии ослабления опорных сечений обычно не производят, так как она легко удовлетворяется из-за относительно большей толщины стенок балок.
Общую устойчивость балок настила проверять не надо, так как их сжатые пояса надежно закреплены в горизонтальном направлении приваренным к ним настилом.
Определяем расход металла на 1 м2 перекрытия
- настил 78,5·1=78,5 кг/м2
- балка настила g/a1 = 31,5/1,2 = 26,25 кг/м2.
Весь расход металла составит 78,5+26,25= 104,75 кг/м2 = 1,05 кН/м2.
Вариант 2. Усложненный тип балочной клетки
Определяем «n» количество шагов балок настила
Принимаем n = 6 шт
Определяем а1 длину шага балок настила
Расстояние между вспомогательными балками рекомендуется назначать в пределах 2-5 м. Определяем количество шагов вспомогательных балок
Принимаем n= 4, тогда расстояние между вспомогательными балками (шаг)
Рисунок 4.2 Усожнённый тип балочной клеки
Толщину настила принимаем таким же, как в первом варианте tн=10 мм. Тогда и нагрузка от настила останется прежним
78,5·1,0=78,5 кг/м2=0,785 кН/м2.
Нормативная нагрузка на балку настила
Расчетная нагрузка на балку настила
Расчетный изгибающий момент (при ℓ=а2=3,0 м)
Мmax=qℓ2/8 = 18,68·3,02/8 = 21,02 кН⋅м=2102 кН⋅см
Требуемый момент сопротивления балки (для стали С245 Ry = 240 МПа)
Wтр =
По сортаменту принимаем двутавр №16, имеющий:Wx=109см3, g = 15,9 кг/м , Ix=873см4, b=81мм.
Проверяем только прогиб, так как W = 109 см3 > Wтр = 79,6 см3
<300/250=1,2 см .
Принятое сечение балки удовлетворяет условиям прочности и прогиба.
Нагрузка на вспомогательную балку от балок настила считаем равномерно распределенной, так как число балок не меньше 4. Определяем нормативную и расчётную нагрузку на вспомогательную балку
Определяем расчетный изгибающий момент и требуемый момент сопротивления
М= ql2/8=67,9·52/8=212,19кН·м=21219 кН·см;
Wтр.=М/(сх·Ry· =21219/(1,1·24·1) =803,75см3.
Выбираем по сортаменту двутавр № 40, имеющий Wx = 953 см3,
Ix= 19062 см4, g = 57 кг/м, bf = 155 мм, tf = 13 мм, h = 400 мм.
Проверяем общую устойчивость вспомогательных балок в середине пролета, в сечении с наибольшими нормальными напряжениями. Их сжатый пояс закреплен от поперечных смещений балками настила, которые вместе с приваренным к ним настилом образуют жесткий диск. В этом случае за расчетный пролет принимаем расстояние между балками настила ℓef = 83,3 см.
Общую устойчивость можно не проверять, если выполняется условие:
Проверим условия применения формулы:
и В сечении ℓ/2 τ = 0, следовательно
с1 = с и δ =1- 0,7
Подставим полученные значения
т.е. общую устойчивость балки можно не проверять.
Принятое сечение удовлетворяет требованиям прочности, устойчивости и прогиба.
По варианту 2 суммарный расход металла составляет
По расходу металла вариант №1 выгоднее, так как 1,05 кН/м2 < 1,166кН/м2.
Сварной балки
Проверка прочности балки.
Проверяем максимальные нормальные напряжения в поясах в середине пролёта балки
Проверяем максимальное касательное напряжение в стенке на опоре балки
,
где
Проверяем местные напряжения в стенке под балками настила:
где F = 2·26,91·5/2 =134,55 кН – опорные реакции балок настила; lloc = b +2tf = 12,5 +2·2 = 16,5 см – длина передачи нагрузки на стенку балки.
Проверяем приведенные напряжения в месте изменения сечения балки
Прочность балки обеспечена.
Проверяем общую устойчивость балки в месте действия максимальных нормальных напряжений, принимая за расчетный пролет 𝓁ef – расстояние между балками настила а1:
а) в середине пролёта, где учтены пластические деформации
при и
где
б) в месте уменьшения сечения балки (балка работает упруго, поэтому δ =1)
Обе проверки показали, что общая устойчивость балки обеспечена.
Проверку прогиба балки может не проводиться, так как принятая высота балки больше минимальной h =110 см ˃ hmin = 107,5 см.
Сварной балки
1.Проверка устойчивости сжатого пояса производится в месте максимальных нормальных напряжений в нем - в середине пролета балки, где возможны пластические деформации.
При проверка проводится по формуле:
Проверка показала, что местная устойчивость пояса обеспечена.
2.Проверка устойчивости стенки балки.
Первоначально определяем необходимость постановки ребер жесткости:
Следовательно вертикальные ребра жесткости необходимы. В зоне учета пластических деформаций необходима постановка ребер жесткости под каждой балкой настила, т.к. местные напряжения в стенке в этой зоне не допустимы.
Определяем длину зоны учёта пластических деформаций в стенке балки
Расстановку вертикальных ребер принимаем по чертежу. Рёбра жёсткости располагаем с одной стороны балки шириной не менее толщиной мм.
Устанавливаем необходимость проверки устойчивости стенки. Так как условная гибкость стенки проверка устойчивости стенки необходима.
Проверяем отсек «а». Определяем средние значения M и Q в сечении на расстоянии х = 300 см от опоры (под балкой настила)
Рисунок 4.5. Схема расположения рёбер жёсткости:
1 – место изменения сечения пояса; 2 – место проверки местной устойчивости стенки; 3 – место проверки поясного шва
Определим действующие напряжения:
Определяем критические напряжения
где
Определим значение коэффициента степени упругого защемления стенки в поясах
где β – коэффициент, принимаемый по табл. 22 ; hef – расчётная высота стенки составной балки, для сварных балок hef = hw.
При δ = 1,81 и а / hef = 2,26 по табл. 24 предельное значение отношения напряжений Расчетное значение поэтому σcr определяем по формуле
где сcr =32,9 получили по табл. 21 при δ = 1,81.
Затем определяем σℓoc, cr, принимая при вычислении а значение а/2
где с1 = 23,24 получили по табл.23 при δ = 1,81 и а/ (2hw)=240/212=1,13
Подставляем полученные значения напряжений в формулу:
Проверка показала, что устойчивость стенки обеспечена, хотя расстояния между рёбрами жёсткости а = 240 см >2hw=212 см.
Стык поясов
Стык каждого пояса балки перекрываем тремя накладками сечениями 300 × 12 мм и 2×130х12 мм. Общая площадь сечения накладок
Определяем усилие в поясе:
Количество болтов для прикрепления накладок
Принимаем 12 болтов.
Стык стенки
Стык стенки перекрываем двумя вертикальными накладками размером 320×1000×8 мм.
Момент, действующий на стенку балки:
Принимаем расстояние между крайними по высоте рядами болтов
Находим коэффициент стыка
где m = 2 – число вертикальных рядов на полунакладке; из таб. 4.1 находим количество рядов болтов k по вертикали при α = 2,04, k =10 (α = 2,04 ˃ 1,94). Принимаем 10 рядов с шагом 100мм, так как 100 ·9 = 900 мм.)
Таблица 4.1 Коэффициент стыка стенки балки
Поверяем несущую способность стыка стенки балки
Проверяем ослабление нижнего растянутого пояса отверстиями под болты диаметром dо=22 мм (на 2 мм больше диаметра болта). Пояс ослаблен двумя отверстиями по краю стыка
т.е. ослаблением пояса можно пренебречь.
Рисунок 4.6 Монтажный стык сварной балки
Проверяем ослабление накладок в середине стыка четырьмя отверстиями
Толщину накладки с 12 мм увеличим до 14 мм, тогда
Список использованной литературы
1. Металлические конструкции. Под ред. Ю.И. Кудишина.-9-е изд.-М.: Издательский центр «Академия», 2007. – 688 с.
2. Металлические конструкции. Общий курс. Под общ. ред. Е.И. Беленя – 6-е изд. -М.: Стройиздат, 1986. – 560 с.
3. Бакиров К.К. Строительные конструкции II. Раздел «Металлические
конструкции». Учебное пособие. Аламты, КазГАСА 1996 г.
4. СНиП РК 5.04-23-2002. Стальные конструкции. - Астана, 2003. – 118 с.
5. Мандриков А.П. Примеры расчета металлических конструкций. –
М.: Стройиздат, 1991. – 431 с.
Образец выполнения курсового проекта «Балочная клетка рабочей площадки»
Исходные данные:
- шаг колонн в продольном направлении L=12 м
- шаг колонн в поперечном направлении B=5 м
- нормативная временная нагрузка рn =18 кПа
- материал настила С235
- материал главной балки С255
- материал балок настила С245
- класс бетона фундамента В10
-отметка верха настила 6,5 м
- строительная высота перекрытия 1,6 м
Коэффициент надёжности по временной нагрузке 𝛾fp=1,2.
Предельный относительный прогиб настила
Предельный относительный прогиб балки настила
Рассмотрим два варианта компоновки балочной клетки рабочей площадки: первый – нормальный тип, второй – усложненный тип.
Вариант 1. Нормальный тип балочной клетки
Рисунок 4.1 Нормальный тип балочной клетки
Расстояние между балками настила определяется несущей способностью настила и обычно принимается равным 0,6 – 1,6 м при стальном настиле. Определим максимальное и минимальное количество шагов балок настила
Принимаем количество шагов балок настила
n =10 дана.
Тогда длина шагов балок настила а1 будет равна
Вычисляем соотношение максимального пролета настила к его толщине
Здесь
При нормативной нагрузке 11÷20 кН/м2 толщина настила должна быть в пределах tн=8÷10 мм. Поэтому толщину настила принимаем равным tн=10 мм. Тогда максимальный пролёт настила
Определяем вес настила, зная что 1 м2 стального листа толщиной 10 мм весит 78,5 кг
78,5·1,0 = 78,5 кг/м2 0,785 кН/м2.
Нормативная нагрузка на балку настила
Расчетная нагрузка на балку настила
Расчетный изгибающий момент (при ℓ= b = 5 м)
Мmax=qℓ2/8 = 26,91· 52/8 = 84,09 кНм = 8409 кНсм
Требуемый момент сопротивления балки
По сортаменту принимаем двутавр №27 Wx=371 см3, g=31,5кг/м , Ix=5010 см4, b=125мм.
Проверяем только прогиб, так как W = 371 см3 > Wтр = 318,52 см3
Проверяем условие жёсткости
1,77 <
Определим фактический пролёт настила (расстояние между полками балок настила в свету)
Принятое сечение балки удовлетворяет условиям прочности и прогиба. Проверку касательных напряжений прокатных балках при отсутствии ослабления опорных сечений обычно не производят, так как она легко удовлетворяется из-за относительно большей толщины стенок балок.
Общую устойчивость балок настила проверять не надо, так как их сжатые пояса надежно закреплены в горизонтальном направлении приваренным к ним настилом.
Определяем расход металла на 1 м2 перекрытия
- настил 78,5·1=78,5 кг/м2
- балка настила g/a1 = 31,5/1,2 = 26,25 кг/м2.
Весь расход металла составит 78,5+26,25= 104,75 кг/м2 = 1,05 кН/м2.
Вариант 2. Усложненный тип балочной клетки
Определяем «n» количество шагов балок настила
Принимаем n = 6 шт
Определяем а1 длину шага балок настила
Расстояние между вспомогательными балками рекомендуется назначать в пределах 2-5 м. Определяем количество шагов вспомогательных балок
Принимаем n= 4, тогда расстояние между вспомогательными балками (шаг)
Рисунок 4.2 Усожнённый тип балочной клеки
Толщину настила принимаем таким же, как в первом варианте tн=10 мм. Тогда и нагрузка от настила останется прежним
78,5·1,0=78,5 кг/м2=0,785 кН/м2.
Нормативная нагрузка на балку настила
Расчетная нагрузка на балку настила
Расчетный изгибающий момент (при ℓ=а2=3,0 м)
Мmax=qℓ2/8 = 18,68·3,02/8 = 21,02 кН⋅м=2102 кН⋅см
Требуемый момент сопротивления балки (для стали С245 Ry = 240 МПа)
Wтр =
По сортаменту принимаем двутавр №16, имеющий:Wx=109см3, g = 15,9 кг/м , Ix=873см4, b=81мм.
Проверяем только прогиб, так как W = 109 см3 > Wтр = 79,6 см3
<300/250=1,2 см .
Принятое сечение балки удовлетворяет условиям прочности и прогиба.
Нагрузка на вспомогательную балку от балок настила считаем равномерно распределенной, так как число балок не меньше 4. Определяем нормативную и расчётную нагрузку на вспомогательную балку
Определяем расчетный изгибающий момент и требуемый момент сопротивления
М= ql2/8=67,9·52/8=212,19кН·м=21219 кН·см;
Wтр.=М/(сх·Ry· =21219/(1,1·24·1) =803,75см3.
Выбираем по сортаменту двутавр № 40, имеющий Wx = 953 см3,
Ix= 19062 см4, g = 57 кг/м, bf = 155 мм, tf = 13 мм, h = 400 мм.
Проверяем общую устойчивость вспомогательных балок в середине пролета, в сечении с наибольшими нормальными напряжениями. Их сжатый пояс закреплен от поперечных смещений балками настила, которые вместе с приваренным к ним настилом образуют жесткий диск. В этом случае за расчетный пролет принимаем расстояние между балками настила ℓef = 83,3 см.
Общую устойчивость можно не проверять, если выполняется условие:
Проверим условия применения формулы:
и В сечении ℓ/2 τ = 0, следовательно
с1 = с и δ =1- 0,7
Подставим полученные значения
т.е. общую устойчивость балки можно не проверять.
Принятое сечение удовлетворяет требованиям прочности, устойчивости и прогиба.
По варианту 2 суммарный расход металла составляет
По расходу металла вариант №1 выгоднее, так как 1,05 кН/м2 < 1,166кН/м2.