Продолжительность жизни лейкоцитов
· Гранулоциты живут в циркулирующей крови 4–5 часов, а в тканях — 4–5 дней. В случаях серьёзной тканевой инфекции продолжительность жизни гранулоцитов укорачивается до нескольких часов, поскольку гранулоциты очень быстро поступают в очаг инфекции, выполняют свои функции и разрушаются.
· Моноциты через 10–12 часов пребывания в кровотоке поступают в ткани. Попав в ткани, они увеличиваются в размерах и становятся тканевыми макрофагами. В этом виде они могут жить месяцами, до тех пор, пока не разрушатся, выполняя функцию фагоцитоза.
· Лимфоциты поступают в систему кровообращения постоянно в процессе дренирования лимфы из лимфатических узлов. Несколько часов спустя они поступают обратно в ткани посредством диапедеза и затем снова и снова возвращаются с лимфой в кровь. Таким образом, осуществляется постоянная циркуляция лимфоцитов через ткань. Продолжительность жизни лимфоцитов составляет месяцы и даже годы в зависимости от потребностей организма в этих клетках.
Микрофаги и макрофаги. Основная функция нейтрофилов и моноцитов заключается в фагоцитозе и последующем внутриклеточном разрушении бактерий, вирусов, повреждённых и закончивших жизненный цикл клеток, чужеродных агентов. Нейтрофилы (и в некоторой степени эозинофилы) — зрелые клетки, фагоцитирующие различный материал (другое название фагоцитирующих нейтрофилов — микрофаги). Моноциты крови — незрелые клетки. Только после попадания в ткани моноциты созревают в тканевые макрофаги и приобретают способность бороться с болезнетворными агентами. Нейтрофилы и макрофаги перемещаются в тканях посредством амебоидных движений, стимулируемых веществами, образуемыми в воспалённой области. Это притяжение нейтрофилов и макрофагов к области воспаления называется хемотаксисом.
Нейтрофилы— наиболее многочисленный тип лейкоцитов. Они составляют 40–75% общего количества лейкоцитов. Размеры нейтрофила: в мазке крови — 12 мкм; диаметр нейтрофила, мигрирующего в тканях, увеличивается почти до 20 мкм. Нейтрофилы образуются в костном мозге в течение 7 суток, через 4 суток выходят в кровоток и находятся в нём 8–12 часов. Продолжительность жизни — около 8 суток. Старые клетки фагоцитируются макрофагами. Нейтрофил содержит несколько митохондрий и большое количество гликогена. Клетка получает энергию путём гликолиза, что позволяет ей существовать в бедных кислородом повреждённых тканях. Количество органелл, необходимых для синтеза белка, минимально; поэтому нейтрофил не способен к продолжительному функционированию и погибает после единственной вспышки активности. Такие нейтрофилы составляют основной компонент гноя («гнойные» клетки). В состав гноя также входят погибшие макрофаги, бактерии, тканевая жидкость. Ядро состоит из 3-5 сегментов, соединённых тонкими перемычками. В цитоплазме — минимальное количество органелл, но много гранул гликогена. Нейтрофил содержит небольшое количество азурофильных гранул (специализированных лизосом) и многочисленные более мелкие специфические гранулы. Выделяют три пула нейтрофилов: циркулирующий, пограничный и резервный. Циркулирующий — пассивно переносимые кровью клетки. При бактериальном инфицировании организма их количество возрастает в течение 24–48 часов в несколько (до 10) раз за счёт пограничного пула, а также за счёт ускоренного выхода резервных клеток из костного мозга. Пограничный пул состоит из нейтрофилов, связанных с эндотелиальными клетками мелких сосудов многих органов, особенно лёгких и селезёнки. Циркулирующий и пограничный пулы находятся в динамическом равновесии.Резервный пул — зрелые нейтрофилы костного мозга.
В зависимости от степени дифференцировки различают палочкоядерные и сегментоядерные нейтрофилы. В нейтрофилах у женщин один из сегментов ядра содержит вырост в форме барабанной палочки — тельце Барра, или половой хроматин (эта инактивированная X-хромосома заметна у 3% нейтрофилов в мазке крови женщин). Палочкоядерныенейтрофилы — незрелые формы клеток с подковообразным ядром. В норме их количество составляет 3–6% общего количества лейкоцитов. Сегментоядерные нейтрофилы — зрелые клетки с ядром, состоящим из 3–5 сегментов, соединённых тонкими перемычками.
Ядерные сдвиги лейкоцитарной формулы. Поскольку при микроскопии мазка крови основным критерием для идентификации разных форм зрелости зернистых лейкоцитов является характер ядра (форма, размер, интенсивность окраски), сдвиги лейкоцитарной формулы обозначают как «ядерные». Сдвиг влево характеризуется увеличением количества молодых и незрелых форм нейтрофилов. При острых гнойно-воспалительных заболеваниях, помимо лейкоцитоза, увеличивается содержание молодых форм нейтрофилов, обычно палочкоядерных, реже — юных нейтрофилов (метамиелоцитов и миелоцитов), что указывает на серьёзный воспалительный процесс. Сдвиги лейкоцитарной формулы нейтрофилов влево определяются появлением незрелых форм нейтрофилов. Различают гипорегенераторный, регенераторный, гиперрегенераторный и регенераторно–дегенераторный типы сдвига влево. Сдвиг вправопроявляется повышением числа сегментированных ядерных форм нейтрофилов. Индекс ядерного сдвига отражает отношение процентного содержания суммы всех молодых форм нейтрофилов (палочкоядерных, метамиелоцитов, миелоцитов, промиелоцитов) к их зрелым формам. У здоровых взрослых людей индекс ядерного сдвига колеблется в диапазоне от 0,05 до 0,10. Увеличение его свидетельствует о ядерном сдвиге нейтрофилов влево, уменьшение — о сдвиге вправо. Функция нейтрофилов. В крови нейтрофилы находятся всего несколько часов (транзитом из костного мозга в ткани), а свойственные им функции выполняют за пределами сосудистого русла (выход из сосудистого русла происходит в результате хемотаксиса) и только после активации нейтрофилов. Главная функция — фагоцитоз тканевых обломков и уничтожение опсонизированных микроорганизмов. Фагоцитоз и последующее переваривание материала происходят параллельно с образованием метаболитов арахидоновой кислоты и респираторным взрывом. Фагоцитоз осуществляется в несколько этапов. После предварительного специфического распознавания подлежащего фагоцитозу материала происходит инвагинация мембраны нейтрофила вокруг частицы и образование фагосомы. Далее в результате слияния фагосомы с лизосомами образуется фаголизосома, после чего происходит уничтожение бактерии и разрушение захваченного материала. Для этого в фаголизосому поступают: лизоцим, катепсин, эластаза, лактоферрин, дефензины, катионные белки; миелопероксидаза; супероксид О2– и гидроксильный радикал ОН–, образующиеся (наряду с Н2О2) при респираторном взрыве. После единственной вспышки активности нейтрофил погибает. Такие нейтрофилы составляют основной компонент гноя («гнойные» клетки).
Эозинофил— зернистый лейкоцит, участвующий в аллергических, воспалительных и антипаразитарных реакциях. Эозинофилы составляют 1–5% лейкоцитов, циркулирующих в крови. Их количество изменяется в течение суток и максимально утром. Эозинофилы в течение нескольких дней после образования остаются в костном мозге, затем циркулируют в крови 3–8 часов, большинство из них выходит из кровотока. Эозинофилы мигрируют в ткани, контактирующие с внешней средой (слизистые оболочки дыхательных и мочеполовых путей, кишечника). Размер эозинофила в крови >12 мкм, увеличивается после выхода в соединительную ткань до 20 мкм. Продолжительность жизни — предположительно 8–14 дней. Эозинофилы на своей поверхности имеют мембранные рецепторы Fc-фрагментов IgG, IgM и IgE, компонентов комплемента C1s, C3a, C3b, C4 и C5a, хемокина эотаксина, ИЛ5. Миграцию эозинофилов в тканях стимулируют эотаксин, гистамин, фактор хемотаксиса эозинофилов ECF, ИЛ5 и др. После выполнения своих функций (после дегрануляции) или в отсутствие факторов активации (например, ИЛ-5) эозинофилы погибают. Ядро эозинофила обычно образует два крупных сегмента, соединённых тонкой перемычкой. В цитоплазме содержится умеренное количество типичных органелл, гликоген. Крупные гранулы овоидной формы содержат электроноплотный материал — кристаллоид. Клетка образует цитоплазматические выросты, при помощи которых перемещается в тканях. В цитоплазме эозинофила присутствуют крупные и мелкие специфические гранулы (красно-оранжевые). Крупные гранулы размером 0,5–1,5 мкм имеют овоидную форму и содержат удлинённый кристаллоид. Кристаллоид имеет структуру кубической решётки и состоит в основном из антипаразитарного агента — главного щелочного белка (MBP). В крупных гранулах также присутствуют нейротоксин (белок X), пероксидаза эозинофила EPO, гистаминаза, фосфолипаза D, гидролитические ферменты, кислая фосфатаза, коллагеназа, цинк, катепсин. Мелкие гранулы содержат арилсульфатазу, кислую фосфатазу, пероксидазу, катионный белок эозинофилов ECP. При аллергических и воспалительных реакциях содержимое гранул секретируется (дегрануляция). Как и нейтрофилы, эозинофилы синтезируют метаболиты арахидоновой кислоты (липидные медиаторы), включая лейкотриен LTС4 и фактор активации тромбоцитов PAF. Эозинофилы активируются множеством факторов из самых различных клеток: интерлейкинами (ИЛ2, ИЛ3, ИЛ5), колониестимулирующими факторами GM-CSF и G-CSF, фактором активации тромбоцитов PAF, фактором некроза опухолей TNF, интерферонами и факторами из паразитов. Активированные эозинофилы перемещаются по градиенту факторов хемотаксиса — бактериальных продуктов и элементов комплемента. Особенно эффективны в качестве хемоаттрактантов вещества, выделяемые базофилами и тучными клетками — гистамин и фактор хемотаксиса эозинофилов ECF. Функции. Уничтожение паразитов, участие в аллергических и воспалительных реакциях. Эозинофилы способны к фагоцитозу, но менее выраженному, чем у нейтрофилов. Эозинофилия возникает при многих паразитарных болезнях. Эозинофилы особенно активно уничтожают паразитов в местах их внедрения в организм, но менее эффективны в отношении паразитов, достигших области окончательной локализации. После активации АТ и компонентами комплемента эозинофилы выделяют содержимое гранул и липидные медиаторы, что оказывает повреждающее действие на паразитов. Секреция содержимого гранул запускается в течение нескольких минут и может продолжаться несколько часов. Участие в аллергических реакциях. Содержимое гранул эозинофилов инактивирует гистамин и лейкотриен LTС4. Эозинофилы вырабатывают ингибитор, блокирующий дегрануляцию тучных клеток. Медленно реагирующий фактор анафилаксии (SRS-A), выделяемый базофилами и тучными клетками, также ингибируется активированными эозинофилами. Участие в воспалительных реакциях. Эозинофилы отвечают хемотаксисом на многие сигналы, исходящие из эндотелия, макрофагов, паразитов и повреждённых тканей.
Базофилы составляют 0–1% общего числа лейкоцитов циркулирующей крови. В крови базофилы диаметром 10–12 мкм находятся 1–2 суток. Как и другие зернистые лейкоциты, базофилы при стимуляции могут покидать кровоток, но их способность к амебоидному движению ограничена. Продолжительность жизни и судьба в тканях неизвестна.Базофилы и тучные клетки во многом сходны. Тем не менее, они имеют морфологические и функциональные различия, по-разному распределяются в тканях и относятся к разным клеточным типам.. Слабодольчатое ядро изогнуто в форме буквы S. Специфические гранулы разнообразны по размерам и по форме. При активации базофилы вырабатывают медиаторы липидной природы. В отличие от тучных клеток, не обладают активностью PGD2-синтетазы и окисляют арахидоновую кислоту преимущественно до лейкотриена LTC4. Функция. Активированные базофилы покидают кровоток и в тканях участвуют в аллергических реакциях. Базофилы имеют высокоаффинные поверхностные рецепторы к Fc-фрагментам IgE, а IgE синтезируют плазматические клетки при попадании в организм Аг (аллергена). Дегрануляция базофилов опосредована молекулами IgE. При этом происходит перекрёстное связывание двух и более молекул IgE. Выделение гистамина и других вазоактивных факторов при дегрануляции и окисление арахидоновой кислоты вызывают развитие аллергической реакции немедленного типа (такие реакции характерны для аллергического ринита, некоторых форм бронхиальной астмы, анафилактического шока).
Моноциты - самые крупные лейкоциты (диаметр в мазке крови около 15 мкм), их количество составляет 2–9% от всех лейкоцитов циркулирующей крови. Образуются в костном мозге, выходят в кровоток и циркулируют около 2–4 сут. Моноциты крови — фактически незрелые клетки, находящиеся на пути из костного мозга в ткани. В тканях моноциты дифференцируются в макрофаги; совокупность моноцитов и макрофагов — система мононуклеарных фагоцитов. Различные вещества, образующиеся в очагах воспаления и разрушения ткани, — агенты хемотаксиса и активации моноцитов. В результате активации увеличивается размер клетки, усиливается обмен веществ, моноциты выделяют биологически активные вещества (ИЛ1, колониестимулирующие факторы M-CSF и GM-CSF, Пг, интерфероны, факторы хемотаксиса нейтрофилов и др.). Функция. Главная функция моноцитов и образующихся из них макрофагов — фагоцитоз. В переваривании фагоцитированного материала участвуют лизосомные ферменты, а также формируемые внутриклеточно H2O2, OH–, O2–. Активированные моноциты/макрофаги продуцируют также эндогенные пирогены. Моноциты/макрофаги продуцируют эндогенные пирогены (ИЛ1, ИЛ6, ИЛ8, фактор некроза опухоли TNFa, a-интерферон) — полипептиды, запускающие метаболические изменения в центре терморегуляции (гипоталамус), что приводит к повышению температуры тела. Критическую роль играет образование простагландина PGE2. Образование эндогенных пирогенов моноцитами/макрофагами (а также рядом других клеток) вызывают экзогенные пирогены — белки микроорганизмов, бактериальные токсины. Наиболее распространённые экзогенные пирогены — эндотоксины (липополисахариды грамотрицательных бактерий). Макрофаг — дифференцированная форма моноцитов — крупная (около 20 мкм), подвижная клетка системы мононуклеарных фагоцитов. Макрофаги — профессиональные фагоциты, они найдены во всех тканях и органах, это мобильная популяция клеток. Продолжительность жизни макрофагов — месяцы. Макрофаги подразделяют на резидентные и подвижные. Резидентные макрофаги присутствуют в тканях в норме, в отсутствие воспаления. Среди них различают свободные, имеющие округлую форму, и фиксированные макрофаги — звездообразной формы клетки, прикрепляющиеся своими отростками к внеклеточному матриксу или к другим клеткам. Свойства макрофага зависят от их активности и локализации. В лизосомах макрофагов содержатся бактерицидные агенты: миелопероксидаза, лизоцим, протеиназы, кислые гидролазы, катионные белки, лактоферрин, супероксид дисмутаза — фермент, способствующий образованию H2O2, OH–, O2–. Под плазмолеммой в большом количестве присутствуют актиновые микрофиламенты, микротрубочки, промежуточные филаменты, необходимые для миграции и фагоцитоза. Макрофаги мигрируют по градиенту концентрации многих веществ, поступающих из различных источников. Активированные макрофаги образуют цитоплазматические псевдоподии неправильной формы, участвующие в амебоидном движении и фагоцитозе. Функции. Макрофаги захватывают из крови денатурированные белки, состарившиеся эритроциты (фиксированные макрофаги печени, селезёнки, костного мозга). Макрофаги фагоцитируют обломки клеток и тканевого матрикса. Неспецифический фагоцитоз характерен для альвеолярных макрофагов, захватывающих пылевые частицы различной природы, сажу и т.п. Специфический фагоцитоз происходит при взаимодействии макрофагов с опсонизированной бактерией. Активированный макрофаг секретирует более 60 факторо. Макрофаги проявляют антибактериальную активность, выделяя лизоцим, кислые гидролазы, катионные белки, лактоферрин, H2O2, OH–, O2–. Противоопухолевая активность заключается в прямом цитотоксическом действии H2O2, аргиназы, цитолитической протеиназы, фактора некроза опухоли (ФНО) из макрофагов. Макрофаг — антигенпредставляющая клетка: он процессирует Аг и представляет его лимфоцитам, что приводит к стимуляции лимфоцитов и запуску иммунных реакций. ИЛ1 из макрофагов активирует Т-лимфоциты и в меньшей степени — В-лимфоциты. Макрофаги продуцирует липидные медиаторы — ПгE2 и лейкотриены, фактор активации тромбоцитов PAF. Активированный макрофаг секретирует ферменты, разрушающие внеклеточный матрикс (эластазу, гиалуронидазу, коллагеназу). С другой стороны, факторы роста, синтезируемые макрофагом, эффективно стимулируют пролиферацию эпителиальных клеток (трансформирующий фактор роста TGFa, фактор роста фибробластов bFGF), пролиферацию и активацию фибробластов (фактор роста из тромбоцитов PDGF), синтез коллагена фибробластами (трансформирующий фактор роста TGFb), формирование новых кровеносных сосудов — ангиогенез (фактор роста фибробластов bFGF). Таким образом, основные процессы, лежащие в основе заживления раны (реэпителизация, образование внеклеточного матрикса, восстановление повреждённых сосудов), опосредованы факторами роста, производимыми макрофагами. Вырабатывая ряд колониестимулирующих факторов (макрофагов — M-CSF, гранулоцитов — G-CSF), макрофаги влияют на дифференцировку клеток крови.
Лимфоциты составляют 20–45% общего числа лейкоцитов крови. Кровь — среда, в которой лимфоциты циркулируют между органами лимфоидной системы и другими тканями. Лимфоциты могут выходить из сосудов в соединительную ткань, а также мигрировать через базальную мембрану и внедряться в эпителий (например, в слизистой оболочке кишечника). Продолжительность жизни лимфоцитов: от нескольких месяцев до нескольких лет. Лимфоциты — иммунокомпетентные клетки, имеющие огромное значение для иммунных защитных реакций организма. С функциональной точки зрения различают В-лимфоциты, Т-лимфоциты и NK-клетки.
B-лимфоциты образуются в костном мозге и составляют менее 10% лимфоцитов крови. Часть В-лимфоцитов в тканях дифференцируются в клоны плазматических клеток. Каждый клон синтезирует и секретирует АТ только против одного Аг. Другими словами, плазматические клетки и синтезируемые ими АТ обеспечивают гуморальный иммунитет. Дифференцировка В-лимфоцитов в Ig-продуцирующие плазматические клетки. Стволовые клетки костного мозга проходят серию этапов дифференцировки, превращаясь в зрелые В-лимфоциты (плазматические клетки). Выделено шесть стадий созревания В-клеток: про-В-клетка, пре-В-клетка, В- клетка, экспрессирующая мембранные Ig , активированная В-клетка, В-лимфобласт, плазматическая клетка, секретирующая Ig.
T-лимфоциты Клетка-предшественница T-лимфоцитов поступает в тимус из костного мозга. Дифференцировка T-лимфоцитов происходит в тимусе. Зрелые Т-лимфоциты покидают тимус, их обнаруживают в периферической крови (80% и более всех лимфоцитов) и лимфоидных органах. Т-лимфоциты, как и В-лимфоциты, реагируют (т.е. узнают, размножаются и дифференцируются) на конкретные Аг, но — в отличие от B-лимфоцитов — участие Т-лимфоцитов в иммунных реакциях сопряжено с необходимостью узнавать в мембране других клеток белки главного комплекса гистосовместимости MHC. Основные функции Т-лимфоцитов — участие в клеточном и гуморальном иммунитете (так, Т-лимфоциты уничтожают аномальные клетки своего организма, участвуют в аллергических реакциях и в отторжении чужеродного трансплантата). Среди Т-лимфоцитов различают CD4+- и CD8+-лимфоциты. CD4+-лимфоциты (Т-хелперы) поддерживают пролиферацию и дифференцировку В-лимфоцитов и стимулируют образование цитотоксических Т-лимфоцитов, а также способствуют пролиферации и дифференцировке супрессорных Т-лимфоцитов.
NK-клетки — лимфоциты, лишённые характерных для Т- и В-клеток поверхностноклеточных детерминант. Эти клетки составляют около 5–10% всех циркулирующих лимфоцитов, содержат цитолитические гранулы с перфорином, уничтожают трансформированные (опухолевые) и инфицированные вирусами, а также чужеродные клетки.
Популяция лимфоцитов по этому признаку неоднородна, их размер в крови варьирует от 4,5 до 10 мкм: малые (4,5–6 мкм), средние (7–10 мкм) и большие лимфоциты (10–18 мкм). . К лимфоцитам относят сходные морфологически, но различающиеся функционально клетки: В-лимфоциты, Т-лимфоциты и NK-клетки. Важное практическое значение имеет также классификация лимфоцитов по дифференцировочным Аг — CD–маркёрам.
В составе гликопротеинов и гликолипидов на поверхности эритроцитов существуют сотни антигенных детерминант, или антигенов (Аг), многие из которых определяют групповую принадлежность крови (группы крови). Эти Аг потенциально могут взаимодействовать с соответствующими им антителами (АТ), если бы такие АТ содержались в сыворотке крови. Однако такое взаимодействие в крови конкретного человека не происходит, так как иммунная система уже удалила клоны секретирующих эти АТ плазматических клеток. Однако, если соответствующие АТ попадают в кровь (например, при переливании чужой крови или её компонентов), развивается реакция взаимодействия между эритроцитарными Аг и сывороточными АТ с зачастую катастрофическими последствиями (несовместимость по группам крови). В частности, при этом происходит агглютинация (склеивание) эритроцитов и их последующий гемолиз. Именно по этим причинам столь важно определение как групповой принадлежности переливаемой крови (донорская кровь), так и крови того лица, кому переливают кровь (реципиент), а также неукоснительное выполнение всех правил и процедур при переливании крови или её компонентов (в РФ порядок переливания крови регламентирован приказом МЗ РФ и приложенной к приказу инструкцией по применению компонентов крови).
Из сотен эритроцитарных Аг Международное общество переливания крови (The International Society of Blood Transfusion — ISBT) к системам групп крови по состоянию на 2003 г. отнесло следующие (в алфавитном порядке): ABO [в англоязычной литературе принято наименование ABO (буква «O»), в русскоязычной — AB0 (цифра «0»)], Cartwright, Chido/Rodgers, Colton, Cost, Cromer, Diego, Dombrock, Duffy, Er, Gerbich, GIL, GLOB (Globoside), Hh, Ii, Indian, JMH (John Milton Hagen), Kell, Kidd, Knops, Kx, Landsteiner–Wiener, Lewis, Lutheran, MNS, OK, P, Raph, Rh, Scianna, Wright, Xg, Yt. В практике переливания крови (гемотрансфузия) и её компонентов обязательная проверка на совместимость по Аг систем AB0 (4 группы) и Rh (2 группы), итого по 8 группам. Остальные системы (они известны как редкие) к несовместимости по группам крови приводят значительно реже, но также должны учитываться при гемотрансфузиях и при тестировании возможности развития гемолитической болезни новорождённого (см. далее «Rh-система»).
Эритроцитарные Аг системы AB0 — A, B и 0 — относятся к классу гликофоринов. Их полисахаридные цепи содержат Аг–детерминанты — агглютиногены А и В. Формирование агглютиногенов А и В происходит под влиянием гликозилтрансфераз, кодируемых аллелями гена АВ0. Этот ген кодирует три полипептида (А, В, 0), два из них (гликозилтрансферазы А и В) модифицируют полисахаридные цепи гликофоринов, полипептид 0 функционально не активен. В результате поверхность эритроцитов разных лиц может содержать либо агглютиноген А, либо агглютиноген В, либо оба агглютиногена (А и В), либо не содержать ни агглютиногена А, ни агглютиногена В. В соответствии с типом экспрессии на поверхности эритроцитов агглютиногенов А и В в системе AB0 выделено 4 группы крови, обозначаемых римскими цифрами I, II, III и IV. Эритроциты группы крови I не содержат ни агглютиногена А, ни агглютиногена В, её сокращённое наименование — 0(I). Эритроциты группы крови IV содержат оба агглютиногена — AB(IV), группы II — A(II), группы III — B(III). Первые три группы крови обнаружил в 1900 г. Карл Ландштайнер, а четвёртую группу немного позже Декастрелло и Штурли.
Агглютинины. В плазме крови к агглютиногенам А и В могут содержаться АТ (соответственно α- и β-агглютинины). Плазма крови группы 0(I) содержит α- и β-агглютинины; группы A(II) — β-агглютинины, B(III) — α-агглютинины, плазма крови группы AB(IV) агглютининов не содержит. Таким образом, в крови конкретного человека АТ к эритроцитарным Аг системы AB0 одновременно не присутствуют . Однако при переливании крови от донора с одной группой к реципиенту с другой группой может возникнуть ситуация, когда в крови реципиента одновременно будут находиться и Аг, и АТ именно к этому Аг, т.е. возникнет ситуация несовместимости. Кроме того, такая несовместимость может возникнуть и по другим системам групп крови. Именно поэтому стало правилом, что переливать можно только одногруппную кровь. Если точнее, то переливают не цельную кровь, а компоненты, так как «показаний к переливанию цельной консервированной донорской крови нет, за исключением случаев острых массивных кровопотерь, когда отсутствуют кровезаменители или свежезамороженная плазма, эритроцитная масса или их взвесь» (из приказа МЗ РФ). И именно поэтому теоретическое представление об «универсальном доноре» с кровью группы 0(I) на практике оставлено.
Каждый человек может быть Rh-положительным либо Rh-отрицательным, что определяется его генотипом и экспрессируемыми Аг Rh-системы. Антигены. 6 аллелей 3 генов системы Rh кодируют Аг: c, C, d, D, e, E. С учётом крайне редко встречающихся Аг системы Rh возможны 47 фенотипов этой системы. Антитела системы Rh относятся к классу IgG (не обнаружены АТ только к Аг d). Если генотип конкретного человека кодирует хотя бы один из Аг C, D и E, такие лица резус–положительны (на практике резус-положительными считают лиц, имеющих на поверхности эритроцитов Аг D — сильный иммуноген). Таким образом, АТ образуются не только против «сильного» Аг D, но могу образоваться и против «слабых» Аг c, C, e и E. Резус–отрицательны только лица фенотипа cde/cde (rr).
Резус-конфликт (несовместимость) возникает при переливании Rh-положительной крови донора Rh-отрицательному реципиенту либо у плода при повторной беременности Rh-отрицательной матери Rh-положительным плодом (первая беременность и/или роды Rh-положительным плодом). В этом случае развивается гемолитическая болезнь новорождённого.