Систематические и случайные ошибки измерений

Ошибки измеренийподразделяются на систематические и случайные.

Величина систематических ошибок одинакова во всех измерениях, проводящихся одним и тем же методом с помощью одних и тех же измерительных приборов. Различают четыре группы систематических ошибок:

1) ошибки, причина возникновения которых известна и величина которых может быть определена достаточно точно. Например, при определении результата прыжка рулеткой возможно изменение её длины за счёт различий в температуре воздуха. Это изменение можно оценить и ввести поправки в измеренный результат;

2) ошибки, причина возникновения которых известна, а величина нет. Такие ошибки зависят от класса точности измерительной аппаратуры. Например, если класс точности динамометра для измерения силовых качеств спортсменов составляет 2.0, то его показания правильны с точностью до 2% в пределах шкалы прибора. Но если проводить несколько измерений подряд, то ошибка в первом из них может быть равной 0,3%, а во втором – 2%, в третьем – 0,7% и т. д. При этом точно определить её значения для каждого из измерений нельзя;

3) ошибки, происхождение которых и величина неизвестны. Обычно они проявляются в сложных измерениях, когда не удаётся учесть все источники возможных погрешностей;

4) ошибки, связанные не столько с процессом измерения, сколько со свойствами объекта измерения. Как известно, объектами измерений в спортивной практике являются действия и движения спортсмена, его социальные, психологические, биохимические и т. п. показатели. Измерения такого типа характеризуются определённой вариативностью, и в её основе может быть множество причин. Рассмотрим следующий пример. Предположим, что при измерении времени сложной реакции хоккеистов используется методика, суммарная систематическая погрешность которой по первым трём группам не превышает 1%. Но в серии повторных измерений конкретного спортсмена получаются такие значения времени реакции (ВР): 0,653 с; 0,526 с; 0,755 с и т. д. Различия в результатах измерений обусловлены внутренними свойствами спортсменов: один из них стабилен и реагирует практически одинаково быстро во всех попытках, другой – нестабилен. Однако и эта стабильность (или нестабильность) может измениться в зависимости от утомления, эмоционального возбуждения, повышения уровня подготовленности.

Систематический контроль за спортсменами позволяет определить меру их стабильности и учитывать возможные погрешности измерений.

В некоторых случаях ошибки возникают по причинам, предсказать которые заранее невозможно. Такие ошибки называются случайными. Их выявляют и учитывают с помощью математического аппарата теории вероятностей.

Перед проведением любых измерений нужно определить источники систематических погрешностей и по возможности устранить их. Но так как полностью это сделать нельзя, то внесение поправок в результат измерения позволяет исправить его с учётом систематической погрешности.

Для устранения систематической погрешности используют:

а) тарирование – проверку показаний измерительных приборов путём сравнения их с показаниями эталонов во всём диапазоне возможных значений измеряемой величины;

б) калибровку – определение погрешностей и величины поправок.

13.

Под случайными величинами понимают числовые характеристики случайных событий. Другими словами, случайные величины – это числовые результаты экспериментов, значения которых которые невозможно (в данное время) предсказать заранее. Случайные величины делят на дискретные и непрерывные в зависимости от того, каково множество всех возможных значений соответствующей характеристики – дискретное или же непрерывное.

Это деление довольно условно, но полезно при выборе адекватных методов исследования.

Случайные величины можно задавать разными способами. Дискретные случайные величины обычно задаются своим законом распределения. Тут каждому возможному значению x1, x2,... случайной величины X сопоставляется вероятность p1,p2,... этого значения. В результате образуется таблица, состоящая из двух строк:

x1 x2 x3 ...

p1 p2 p3 ...

Это и есть закон распределения случайной величины. Непрерывные случайные величины законом распределения задать невозможно, так как по самому своему определению их значения невозможно перенумеровать и потому задание в виде таблицы тут исключается. Однако для непрерывных случайных величин есть другой способ задания (применимый, кстати, и для дискретных величин) –это функция распределения:

F(x)=P[X<x]

равная вероятности события [X<x], которое состоит в том, что случайная величина X примет значение, меньшее заданного числа x.

14 При обработке данных используют такие характеристики случайной величины Х как моменты порядка q, т.е. математические ожидания случайной величины Xq, q = 1, 2, … Так, само математическое ожидание – это момент порядка 1. Для дискретной случайной величины момент порядка q может быть рассчитан как

Систематические и случайные ошибки измерений - student2.ru

Для непрерывной случайной величины Систематические и случайные ошибки измерений - student2.ru

Моменты порядка q называют также начальными моментами порядка q, в отличие от родственных характеристик – центральных моментов порядка q, задаваемых формулой

Систематические и случайные ошибки измерений - student2.ru

Вопрос.

Диспе́рсия случа́йной величины́ — мера разброса данной случайной величины, то есть её отклонения от математического ожидания

Дисперсией дискретной случайной величины называют сумму квадратов отклонения значений случайной величины от своего математического ожидания. Дисперсия показывает величину разброса значений случайной величины от своего математического ожидания.

Пусть — случайная величина, определённая на некотором вероятностном пространстве. Тогда

D{X}=M [|X-M[X]|2] , где символ M обозначает математическое ожидание.

Дисперсия любой случайной величины неотрицательна:

Если дисперсия случайной величины конечна, то конечно и её математическое ожидание;

Если случайная величина равна константе, то её дисперсия равна нулю

Дисперсия суммы двух случайных величин равна: Систематические и случайные ошибки измерений - student2.ru , где Систематические и случайные ошибки измерений - student2.ru — их ковариация;

16.

Вероятность того, что истинное значение измеряемой величины лежит внутри некоторого интервала, называется доверительной вероятностью, или коэффициентом надежности, а сам интервал - доверительным интервалом. Каждой доверительной вероятности соответствует свой доверительный интервал. Однако это утверждение справедливо только при достаточно большом числе измерений (более 10), да и вероятность 0,67 не представляется достаточно надежной - примерно в каждой из трех серий измерений a может оказаться за пределами доверительного интервала. Для получения большей уверенности в том, что значение измеряемой величины лежат внутри доверительного интервала, обычно задаются доверительной вероятностью 0,95 - 0,99. Доверительный интервал для заданной доверительной вероятности учетом влияния числа измерений n можно найти, умножив стандартное отклонение среднего арифметического на так называемый коэффициент Стьюдента .

Вопрос.

Среднее арифметическое

Определение дисперсии по опытным данным. Если для какой-либо величины А непосредственным измерением получено n значений ai с одинаковой степенью точности и если ошибки величины А подчинены нормальному закону распределения, то наиболее вероятным значением А будет среднее арифметическое:

Систематические и случайные ошибки измерений - student2.ru , где

a - среднее арифметическое,
n - число измерений параметра,
ai - измеренное значение на i-м шаге.

Отклонение наблюдаемого значения (для каждого наблюдения) ai величины А от среднего арифметического: ai - a.

Для определения дисперсии нормального закона распределения ошибок в этом случае пользуются формулой:

Систематические и случайные ошибки измерений - student2.ru , где

Систематические и случайные ошибки измерений - student2.ru 2-дисперсия,
a-среднее арифметическое,
n-число измерений параметра,
ai - измеренное значение на i-м шаге.

Наши рекомендации