Шкалы, их виды и особенности
Тема 2.4. Занятие № 13.
Система воспроизведения единиц физических величин
1. Физическая величина и её размерность
2. Шкалы их виды и особенности
3. Эталоны
1. Физическая величина и её размерность
Основным объектом измерения в метрологии являются физические величины.
Физическая величина (краткая форма термина — «величина») применяется для описания материальных систем и объектов (явлений, процессов и т.п.), изучаемых в любых науках (физике, химии и др.). Как известно, существуют основные и производные величины. В качестве основных выбирают величины, которые характеризуют фундаментальные свойства материального мира. Механика базируется на трех основных величинах, теплотехника — на четырех, физика — на семи. ГОСТ 8.417 устанавливает семь основных физических величин — длина, масса, время, термодинамическая температура, количество вещества, сила света, сила электрического тока, с помощью которых создается все многообразие производных физических величин и обеспечивается описание любых свойств физических объектов и явлений.
Измеряемые величины имеют качественную и количественную характеристики.
Формализованным отражением качественного различия измеряемых величин является их размерность. Согласно международному стандарту ИСО размерность обозначается символом dim(размерность). Размерность основных величин — длины, массы и времени — обозначается соответствующими заглавными буквами:
dim l = L; dim m = M; dim t=T.
Размерность производной величины выражается через размерность основных величин с помощью степенного одночлена:
где L, М, Т— размерности соответствующих основных физических величин; a, b, g — показатели размерности (показатели степени, в которую возведены размерности основных величин).
Каждый показатель размерности может быть положительным или отрицательным, целым или дробным, нулем. Если все показатели размерности равны нулю, то величина называется безразмерной. Она может быть относительной, определяемой как отношение одноименных величин (например, относительная диэлектрическая проницаемость), и логарифмической, определяемой как логарифм относительной величины (например, логарифм отношения мощностей или напряжений).
Количественной характеристикой измеряемой величины служит ее размер. Получение информации о размере физической или нефизической величины является содержанием любого измерения.
Шкалы, их виды и особенности
Измерения различных величин, характеризующих свойства систем, явлений и других процессов занимают важное место в повседневной жизни. Разнообразные проявления (количественные или качественные) любого свойства образуют множества, отображения элементов которых образуют шкалы измерения этих свойств. Шкала измерений количественного свойства является шкалой физической величины. Шкала физической величины — это упорядоченная совокупность значений физической величины, служащая исходной основой для измерений данной величины.
Различают следующие типы шкал измерений:
шкалы наименованийхарактеризуются оценкой (отношением) эквивалентности различных качественных проявлений свойства. Эти шкалы не имеют нуля и единицы измерений, в них отсутствуют отношения сопоставления типа «больше — меньше». Это самый простой тип шкал. Пример шкалы наименований: шкалы цветов, представляемые в виде атласов цветов. При этом процесс измерений заключается в достижении (например, при визуальном наблюдении) эквивалентности испытуемого образца с одним из эталонных образцов, входящих в атлас цветов;
шкалы порядкаописывают свойства величин, упорядоченные по возрастанию или убыванию оцениваемого свойства, т.е. позволяют установить отношение больше/ меньше между величинами, характеризующими это свойство. В этих шкалах может в ряде случаев иметься нуль (нулевая отметка), но принципиальным для них является отсутствие единицы измерения, поскольку невозможно установить, в какое число раз больше или меньше проявляется свойство величины. Примеры шкал порядка: шкалы измерения твердости, баллов силы ветра, землетрясений;
шкалы интервалов (разностей)описывают свойства величин не только с помощью отношений эквивалентности и порядка, но также и с применением отношений суммирования и пропорциональности интервалов (разностей) между количественными проявлениями свойства. Шкалы интервалов могут иметь условно выбранное начало — нулевую точку. К таким шкалам, например, относятся летоисчисление по различным календарям, в которых за начало отсчета принято либо сотворение мира, либо Рождество Христово, температурные шкалы Цельсия, Фаренгейта, Реомюра.
Шкала интервалов величины Q описывается уравнением:
Q = Q0 + q[Q],
где q — числовое значение величины, Q0 - начало отсчета шкалы; [Q] — единица рассматриваемой величины. Такая шкала определяется заданием начала отсчета Q0 шкалы и единицы величины [Q];
шкалы отношений описывают свойства величин, для множества количественных проявлений которых применимы логические отношения эквивалентности, порядка и пропорциональности, а для некоторых шкал также отношение суммирования. В шкалах отношений существует естественный нуль и по согласованию устанавливается единица измерения.
Шкалы отношений описываются уравнением:
Q = q [Q],
где Q— физическая величина, для которой строится шкала, а переход одной шкалы отношений к другой осуществляется через уравнение:
Примерами шкалы отношений являются шкалы массы и термодинамической температуры;
абсолютные шкалыкроме всех признаков шкал отношений обладают дополнительным признаком: в них присутствует однозначное определение единицы измерения. Такие шкалы присущи таким относительным единицам, как коэффициенты усиления, ослабления, полезного действия и т.д. Ряду абсолютных шкал, например, коэффициентов полезного действия, присущи границы, заключенные между нулем и единицей;
условные шкалы— шкалы величин, в которых не определена единица измерения. К ним относятся шкалы наименований, и порядка.
Шкалы интервалов, отношений и абсолютные называются обычно метрическими (физическими), а шкалы наименований и порядка — неметрическими. Практическая реализация шкал измерений осуществляется путем стандартизации как самих шкал и единиц измерений, так и способов и условий их однозначного воспроизведения.
Эталоны
Система воспроизведения единиц величини передачи информации об их размерах всем без исключения СИ в стране составляет техническую базу обеспечения единства измерений.
Воспроизведение единиц величин. В соответствии с основным уравнением измерения измерительная процедура сводится к сравнению неизвестного размера с известным, в качестве которого выступает размер соответствующей единицы Международной системы. Воспроизведение единицы представляет собой совокупность операций по материализации единицы физической величины с наивысшей в стране точностью с помощью государственного эталона или исходного рабочего эталона. Различают воспроизведение основных и производных единиц. Размеры единиц могут воспроизводиться там же, где выполняются измерения (децентрализованный способ), либо информация о них должна передаваться с централизованного места их хранения или воспроизведения (централизованный способ).
Децентрализовано воспроизводятся единицы многих производных физических величин. Основные единицы сейчас воспроизводятся только централизованно.
Централизованное воспроизведение единиц осуществляется с помощью специальных технических средств, называемых эталонами. Эталон, обеспечивающий воспроизведение единицы с наивысшей в стране (по сравнению с другими эталонами той же единицы) точностью, называется первичным эталоном. Первичные эталоны — это уникальные средства измерений, часто представляющие собой сложнейшие измерительные комплексы, созданные с учетом новейших достижений науки и техники на данный период. Эталон, обеспечивающий воспроизведение единицы в особых условиях и служащий для этих условий, называется специальным эталоном. Официально утвержденные в качестве исходного для страны первичный или специальный эталоны называются государственными.
Эталон, получающий размер единицы путем сличения с первичным эталоном рассматриваемой единицы, называется вторичным эталоном.
Эталон должен отвечать трем основным требованиям: неизменность (способность удерживать неизменным размер воспроизводимой им единицы в течение длительного интервала времени); воспроизводимость (воспроизведение единицы с наименьшей погрешностью для данного уровня развития измерительной техники); сличаемостью (способность не претерпевать изменений и не вносить каких-либо искажений при проведении сличений).
Государственные эталоны представляют собой национальное достояние и поэтому должны храниться в метрологических институтах страны в специальных эталонных помещениях, где поддерживается строгий режим по влажности, температуре, вибрациям и другим параметрам. Для обеспечения единства измерений физических величин в международном масштабе большое значение имеют международные сличения национальных государственных эталонов. Эти сличения помогают выявить систематические погрешности воспроизведения единицы национальными эталонами, установить, насколько национальные эталоны соответствуют международному уровню, и наметить пути совершенствования национальных (государственных) эталонов.
В 2000 г. эталонная база России была представлена 118 государственными эталонами, 250 вторичными эталонами, 70 установками высшей точности и государственными стандартными образцами в количестве более 8000.
Передача размера единицыпредставляет собой приведение размера единицы физической величины, хранимой поверяемым СИ, к размеру единицы, воспроизводимой или хранимой эталоном. Передача размера осуществляется при сличении этих единиц. При передаче информации о размере единиц обширному парку СИ приходится прибегать к многоступенчатой процедуре.
По размеру единицы, воспроизводимому государственным эталоном, устанавливаются значения физических величин, воспроизводимые вторичными эталонами.
Среди вторичных эталонов различают: эталоны-сравнения, применяемые для сличения эталонов, которые по тем или иным причинам не могут непосредственно сличаться друг с другом; эталоны-свидетели, предназначенные для поверки сохранности и неизменности государственного эталона и для замены его в случае порчи или утраты; эталоны-копии, используемые для передачи информации о размере единицы рабочим эталонам.
Самыми распространенными по численности парка вторичными эталонами являются рабочие эталоны различных разрядов — 1,2, 3-го (иногда 4-го). От рабочих эталонов низшего разряда размер передается рабочим средствам измерения (РСИ). Число РСИ по каждому из видов измерений достигает сотен тысяч и даже миллионов экземпляров (например, термометры, манометры).
РСИ обладает различной точностью измерений: наиболее точные РСИ при поверке (калибровке) получают размер от вторичных эталонов или рабочих эталонов 1-го разряда; наименее точные — от эталонов низшего разряда (3-го или 4-го).
В качестве методов передачи информации о размере единиц используют методы непосредственного сличения (т.е. сличения меры с мерой или показаний двух приборов), а также сличение с помощью компаратора.
Непосредственное сличение применяют, как правило, для менее точных мер. Непосредственно сличать можно только штриховые меры длины (линейки, брусковые метры, рулетки), меры вместимости (измерительные цилиндры, бюретки, пипетки, мерные колбы и т.п.). Для более тонной поверки используют приборы-сравнения — компарирующие устройства. Наиболее часто применяют следующие компараторы: образцовые весы различных разрядов (при поверке гирь), мосты постоянного и переменного тока (при сличении мер сопротивления и ЭДС нормальных элементов).
На каждой ступени передачи информации о размере единицы точность теряется в 3—5 раз (иногда — в 1,25—10 раз). Значит, при многоступенчатой передаче эталонная точность не доходит до потребителя. Поэтому для высокоточных СИ число ступеней может быть сокращено вплоть до передачи им информации непосредственно от рабочих эталонов 1-го разряда.
Поверочные схемыСИ представляют собой документ, который устанавливает соподчинение СИ, участвующих в передаче размера единицы от эталона к рабочим СИ с указанием методов и погрешности при передаче. Различают государственные и локальные поверочные схемы. Государственные схемы регламентируют передачу информации о размере единицы всему парку СИ в стране. Во главе этой схемы находится государственный эталон.
Государственные поверочные схемы закладываются в основу государственных стандартов. Локальные поверочные схемы распространяются на СИ, подлежащие поверке, организуемой МС министерства (ведомства) или МС юридического лица.
Систему передачи образно представляют в виде пирамиды (рис. 1): в основании находится совокупность РСИ; вершину занимает государственный эталон; на промежуточных плоскостях — рабочие эталоны различных разрядов. От основания к вершине уменьшается погрешность СИ, растет их стоимость, снижается «тираж» изготовления.
Рис.1. Схематическое изображение системы передачи размера единиц величин
Процесс передачи размера единиц происходит при поверке и калибровке СИ. Поверка и калибровка представляют собой набор операций, выполняемых с целью определения и подтверждения соответствия СИ установленным техническим требованиям.
Принципиальное отличие поверки от калибровки состоит в том, что поверка:
1) носит обязательный характер и проводится в рамках государственного метрологического контроля;
2) проводится в отношении СИ, которые применяются в законодательно установленных (Закон РФ «Об обеспечении единства измерений») сферах, главным образом непроизводственных — здравоохранение, охрана окружающей среды, торговые операции, государственные учетные операции, обеспечение обороны государства, банковские, налоговые, таможенные операции и пр.
Контрольные вопросы
1. Определение физической величины, классификация физических величин.
2. В чём заключается сущность единства измерений?
3. Что такое шкалы измерений? Какие типы шкал существуют?
4. Для чего нужны эталоны физических величин?
5. Раскройте основные понятия, входящие в определение эталона.