Строение желчных кислот и их роль в пищеварении.
Желчь представляет собой сложную жидкость со щелочной реакцией. В ней выделяют сухой остаток - около 3% и воду - 97%. В сухом остатке обнаруживается две группы веществ:
- попавшие сюда путем фильтрации из крови натрий, калий, бикарбонат-ионы, креатинин, холестерол (ХС), фосфатидилхолин (ФХ),
- активно секретируемые гепатоцитами билирубин и желчные кислоты.
Желчные кислоты В человеческом организме главным образом осуществляют синтез холестерина и влияют на всасывание жиров из кишечника. Кроме того, соединения участвуют в регуляции желчевыделения и желчеобразования, также оказывают сильное влияние на процесс переваривания и усвоения липидов. Их соединения собираются в тонкой кишке. Процесс происходит под воздействием моноглицеридов и свободных жирных кислот, которые находятся на поверхности жировых отложений. При этом образуется тонкая пленка, которая препятствует соединению маленьких капель жира в более объемные. Благодаря этому происходит сильное снижение поверхностного натяжения. Это приводит к образованию мицеллярных растворов. Они, в свою очередь, облегчают действие панкреатической липазы. С помощью жировой реакции она расщепляет их на глицерин, который в дальнейшем всасывается стенкой кишечника. Желчные кислоты соединяются с жирными, не растворившимися в воде, и образуют холеиновые. Данные соединения легко расщепляются и быстро всасываются с помощью ворсинок верхней части тонкой кишки. Холеиновые кислоты преобразуются в мицеллы. Далее они всасываются внутрь клеток, при этом без труда преодолевая их мембраны.
4. Какие ферменты генерируют НАДФ·Н2 ? Его роль в синтезе жирных кислот?
5.Какие липопротеины называются атерогенными? Формула холестерина.
Липопротеины различаются и по участию в атерогенезе.
Атерогенность липопротеинов частично зависит от размера частиц. Самые мелкие липопротеины, такие как ЛПВП, легко проникают в стенку сосуда, но также легко ее покидают, не вызывая атеросклероз. Богатые триглицеридами частицы – хиломикроны и крупные ЛПОНП, как полагают, не атерогенны, но их избыток может вызвать острый панкреатит. Что касается остатков липолиза богатых триглицеридами липопротеинов –липопротеинов промежуточной плотности, то они считаются атерогенными.
ЛПНП, липопротеины промежуточной плотности и мелкие ЛПОНП достаточно малы, чтобы проникать в стенку сосуда, и в случае химической модификации (вследствие окисления) легко задерживаются в сосудистой стенке.
ЛПОНП - образуются в печени, являются транспортной формой эндогенных ТАГ. Как и хиломикроны, являются субстратами липопротеинлипазы эндотелия капилляров. После гидролиза ТАГ, ЛПОНП превращаются в ЛПНП.
ЛПНП - образуются в крови из ЛПОНП под действием липопротеинлипазы. Богаты холестеролом, транспортируют его во внепечёночные ткани. В результате взаимодействия ЛПНП с рецепторами на поверхности мембран холестерол из ЛПНП проникает внутрь клеток, где участвует в образовании клеточных структур и реакциях биосинтеза веществ (см.14.4.1).
ЛПВП – образуются в печени, первоначально состоят преимущественно из белков и фосфолипидов и имеют форму дисков. При помощи фермента ЛХАТ липопротеины этого класса извлекают избыток холестерола из внепечёночных клеток и в форме эфиров доставляют его в печень.
Увеличение содержания в крови ЛПНП и ЛПОНП и уменьшение содержания ЛПВП способствует развитию атеросклероза. Следовательно, ЛПОНП и ЛПНП –атерогенные липопротеины, ЛПВП –антиатерогенные липопротеины.
Билет 11 = 26
1. Реакции образования кетоновых тел. Где осуществляется кетогенез и какие условия способствует его усилению? Автономная саморегуляция кетогенеза.
Под термином «кетоновые (ацетоновые) тела» подразумевают ацетоуксусную кислоту (ацетоацетат) СН3СОСН2СООН, β-оксимасляную кислоту (β-оксибутират, или D-3-гидроксибутират) СН3СНОНСН2СООН и ацетон СН3СОСН3. Кетоновые тела образуются в печени, легко проходят через митохондриальные и клеточные мембраны и поступают в кровь. Кровью они транспортируются во все другие ткани. Используются только ацетоацетат и бета-гидроксибутират.
1. На первом этапе из 2 молекул ацетил-КоА образуется ацетоацетил-КоА. Реакция катализируется ферментом ацетил-КоА-ацетилтрансферазой (3-кетотиолазой). 2. Затем ацетоацетил-КоА взаимодействует еще с одной молекулой ацетил-КоА. Реакция протекает под влиянием фермента гидро-ксиметилглутарил-КоА-синтетазы.
3. Образовавшийся β-окси-β-метилглутарил-КоА способен под действием гидроксиметилглутарил-КоА-лиазы расщепляться на ацетоацетат и ацетил-КоА. Ацетоацетат восстанавливается при участии НАД-зависимой D-3- гидроксибутиратдегидрогеназы, при этом образуется D-β-оксимасляная кислота (D-3-гидроксибутират). Следует подчеркнуть, что фермент специфичен по отношению к D-стереоизомеру и не действует на КоА-эфиры.
II. Существует второй путь синтеза кетоновых тел. Образовавшийся путем конденсации 2 молекул ацетил-КоА ацетоацетил-КоА способен отщеплять коэнзим А и превращаться в ацетоацетат. Этот процесс катализируется ферментом ацетоацетил-КоА-гидролазой (деацилазой).
Однако второй путь образования ацетоуксусной кислоты (ацетоацетата) не имеет существенного значения, так как активность деацилазы в печени низкая.
Усиление кетогенеза: Постепенное истощение запасов углеводов при сахарном диабете приводит к относительному отставанию утилизации кетоновых тел от кетогенеза. Причина отставания: не хватает сукцинил-КоА и ЩУК, которые, в основном, являются продуктом обмена углеводов. Для эффективного использования продуктов распада жира необходимы продукты углеводного обмена: сукцинил-КоА и ЩУК. Таким образом, при углеводном голодании концентрация кетоновых тел в крови увеличивается. На 3-й день голодания концентрация кетоновых тел в крови будет примерно 2-3 ммоль/л, а при дальнейшем голодании - гораздо более высокой. Это состояние называют гиперкетонемия. У здоровых людей при мышечной работе и при голодании наблюдается гиперкетонемия, но она незначительна.
2. В каком виде свободные жирные кислоты переносятся с током крови? Схема путей их утилизации в тканях.
Жирные кислоты – алифатические карбоновые кислоты – в организме могут находиться в свободном состоянии (следовые количества в клетках и тканях) либо выполнять роль строительных блоков для большинства классов липидов.
Местом депонирования жирных кислот является жировая ткань (адипоциты) в составе триглицеридов (этерифицированные жирные кислоты). Утилизация происходит в мышцах и печени, куда они транспортируются в форме свободных (неэтерифицированных) жирных кислот при помощи переносчика (альбумина). В печени большая часть НЭЖК подвергается реэтерификации (связыванию) с образованием триглицеридов и фосфолипидов. Свободные жирные кислоты, и особенно, олеиновая, пальмитиновая, линолевая накапливаются в жировой ткани в виде триглицеридов. Свободные жирные кислоты встречаются в очень небольшом количестве. В основном они находятся в составе других липидов. При этом они связаны с другими компонентами липидов сложноэфирной связью (эстерифицированы).