Показатели качества измерений и испытаний
Единство измерений, однако, не может быть обеспечено только знанием погрешностей. При проведении измерений также важно знать показатели качества измерений. Под качеством измерений понимают совокупность свойств, обусловливающих получение результатов с требуемыми точностными характеристиками в необходимом виде и в установленные сроки.
Качество измерений характеризуется такими показателями, как точность, правильность и достоверность. Эти показатели должны определяться по оценкам, к которым предъявляются требования состоятельности, несмещенности и эффективности. Причем, в отличие от числовых характеристик, оценки являются случайными величинами, значение которых зависит от числа наблюдений n.
Состоятельной называют оценку, которая при n→ ∞ сводится по вероятности к оцениваемой величине.
Несмещенной называется оценка, математическое ожидание которой равно оцениваемой величине.
Эффективной называют такую оценку, которая имеет наименьшую дисперсию σ2 = min.
Точность измерений определяется близостью к нулю погрешности результата измерения. Количественно точность может быть выражена обратной величиной модуля относительной погрешности, определенной в долях.
Правильность измерений определяется близостью к нулю систематической погрешности, т.е. результат «исправлен» на величину систематической погрешности.
Достоверность измерений определяется степенью доверия к результату и характеризуется вероятностью того, что истинное значение измеряемой величины лежит в указанных окрестностях действительного. Эти вероятности называют доверительными, а окрестности – доверительным интервалом с доверительными границами.
Доверительным интервалом от – Δд до + Δд называют интервал значений случайной погрешности, который с заданной доверительной вероятностью Рд накрывает истинное значение измеряемой величины:
Рд {`X - Δд ≤ Х ≤ `X + Δд }.
При малом числе измерений (n 20…25) и использовании нормального закона не представляется возможным определить доверительный интервал, так как нормальный закон распределения описывает поведение случайной погрешности в принципе при бесконечно большом числе измерений.
Поэтому при малом числе измерений используют распределение Стьюдента (предложенное английским статистиком Госсетом, публиковавшимся под псевдонимом «студент»), которое обеспечивает возможность определения доверительных интервалов при ограниченном числе измерений.
Границы доверительного интервала при этом определяются по формуле
Δд = t·S( ),
где t – коэффициент распределения Стьюдента, зависящий от задаваемой доверительной вероятности Рд и числа измерений n.
При увеличении числа наблюдений n распределение Стьюдента быстро приближается к нормальному распределению и совпадает с ним уже при n ≥30.
Следует отметить, что результаты измерений, не обладающие достоверностью, т. е. степенью уверенности в их правильности, не представляют ценности. К примеру, датчик измерительной схемы может иметь весьма высокие метрологические характеристики, но влияние погрешностей от его установки, внешних условий, методов регистрации и обработки сигналов приведет к большой конечной погрешности измерений.
При проведении испытаний их качество, наряду с такими показателями, как точность, правильность и достоверность, характеризуется также сходимостью и воспроизводимостью результатов.
Очевидно, что два испытания одного и того же объекта одинаковым методом не дают идентичных результатов. Объективной мерой их могут служить статистически обоснованные оценки ожидаемой близости результатов двух или более испытаний, полученных при строгом соблюдении их методики. В качестве таких статистических оценок согласованности результатов испытаний и принимаются сходимость и воспроизводимость.
Сходимость – это близость результатов двух испытаний, полученных одним методом, на идентичных установках, в одной лаборатории. Воспроизводимость отличается от сходимости тем, что оба результата должны быть получены в разных лабораториях.