Введение. Что означает «точность» и «неопределенность» в измерениях?

Содержание

Введение

Что такое метрология?

Что означает «точность» и «неопределенность» в измерениях?

Что означает прослеживаемость?

Что такое эталон?

В чем разница между калибровкой, поверкой, регулировкой и градуированием?

Заключение

Список используемой литературы

Введение

Наука начинается тогда,

когда начинают измерять.

Д.И. Менделеев

Проблема обеспечения единства измерений имеет возраст, сопоставимый с возрастом человечества. Как только человек стал обменивать или продавать результаты своего труда, возник вопрос - как велик эквивалент этого труда и как велик продукт, представленный на обмен или продажу. Для характеристики этих величин использовались различные свойства продукта - размеры,- как линейные, так и объемные,- масса или вес, позднее цвет, вкус, состав и т. д. и т. п. Естественно, что в давние времена еще не существовало развитого математического аппарата, не было четко сформулированных физических законов, позволяющих охарактеризовать качество и стоимость товара. Тем не менее проблема справедливой сбалансированной торговли была актуальна всегда. От этого зависело благосостояние общества, от этого же возникали войны.

Первыми средствами обеспечения единства измерений были объекты, которые имеются в распоряжении человека всегда. Так появились первые меры длины, опирающиеся на размеры рук и ног человека. На Руси использовались локоть, пядь, сажень, косая сажень. На Западе - дюйм, фут, сохранившие свое название до сих пор. Поскольку размеры рук и ног у разных людей были разными, то должное единство измерений не всегда удавалось обеспечить. Следующим шагом были законодательные акты различных правителей, предписывающие, например, за единицу длины считать среднюю длину стопы нескольких людей. Иногда правители просто делали две зарубки на стене рыночной площади, предписывая всем торговцам делать копии таких «эталонных мер». В настоящее время такую меру можно видеть на Вандомской площади в Париже в том месте, где когда-то располагался главный рынок Европы.

По мере развития человечества и науки, особенно физики и математики, проблему обеспечения единства измерений стали решать более широко. Появились государственные службы и хранилища мер, с которыми торговцам в законодательном порядке предписывалось сравнивать свои меры. Для определения размеров единиц выбирались размеры объектов, не изменяющиеся со временем. Например, для определения размера единицы длины измерялся меридиан Земли, для определения единицы массы измерялась масса литра воды. Единицы времени с давних времен до настоящего момента связывают с вращением Земли вокруг Солнца и вокруг собственной оси.

Дальнейший прогресс в обеспечении единства измерений состоял уже в произвольном выборе единиц, не связанных с веществами или объектами. Это связано с тем фактом, что изготовить копию меры (передать размер единицы какой-либо величины) можно с гораздо более высокой точностью, чем повторно независимо воспроизвести эту меру. В самом деле, точность определения длины меридиана и деления его на 40 миллионов частей оказывается очень невысокой. Подробно к этому мы вернемся при определении основных понятий и категорий метрологии. Здесь в кратком историческом экскурсе интересно вспомнить, что программа измерения длины парижского меридиана оказалась более полезной в составлении подробных карт перед наполеоновскими войнами, чем в точном определении единицы длины.

Гигантский скачок в точности измерений механических величин был совершен при внедрении лазеров в измерительную технику. Образно говоря, точность средств измерения стала определяться параметрами отдельного атома. Если выбрать определенный тип атома, определенный изотоп элемента, поместить атомы в резонатор лазера и использовать все преимущества, присущие лазерному излучению, то реально достижимая погрешность воспроизведения единицы длины может сказываться в тринадцатом-четырнадцатом знаках.

История развития науки об обеспечении единства измерений может быть прослежена не только на совершенствовании точности и единообразия определения какой-то одной единицы. Важным моментом является количество единиц физических величин, их отнесение к основным или производным, а также исторический аспект образования дольных и кратных единиц.

По мере совершенствования физики и математики появилась проблема измерения нового класса физических величин. Так при развитии теории электричества встал вопрос - как быть с единицами электромагнитных величин? С одной стороны, новый класс явлений подсказывал необходимость введения новых единиц и величин. С другой - исходно была установлена связь между электромагнитными явлениями и эффектами механическими - законы Кулона и Био-Савара-Лапласа. Точки зрения наиболее авторитетных ученых по этому поводу также разделились. Некоторые считали, что «рассмотрение (электромагнитных явлений) будет более плодотворным, если ввести четвертую, не зависящую от механических единицу» (А. Зоммерфельд). Другие, напротив, считали различные проявления свойств материи единым целым и были противниками введения независимых электрических величин и единиц. В результате в практике появились системы единиц физических величин, имеющие различное число основных, т. е. произвольно выбранных, физических величин. Подробно на этом мы остановимся в разделе, посвященном единицам физических величин.

С исторической точки зрения интересно обратить внимание на сложившуюся практику образования дольних (более мелких) и кратных (более крупных) единиц физических величин. В настоящее время мы пользуемся в основном десятичной системой счета, и действующая международная система единиц физических величин предписывает образовывать дольные и кратные единицы, домножая размер основной единицы на множитель, кратный десяти. Тем не менее, история знает использование самых разнообразных множителей кратности. Например, сажень как мера длины равнялась трем аршинам, 1 фут равнялся 12 дюймам, 1 аршин - 16 вершкам, 1 пуд - 40 фунтам, 1 золотник - 96 долям, 1 верста - 500 саженям и т.д.

Такая исторически сложившаяся практика образования дольных и кратных величин оказалась крайне неудобной. Поэтому при принятии международной системы единиц СИ на эту проблему обращалось особое внимание. По большому счету десятичная система оказалась неудобной только при исчислении времени, т. к. единицы одноименной величины разного размера оказались кратными 12 (соотношение года и месяца) и 365,25 (соотношение года и суток). Эта кратность обусловлена скоростью вращения Земли и фазами Луны и является наиболее естественной. Дальнейшая замена кратности в соотношении час-минута и минута-секунда с 60 на кратное 10 уже особого смысла не имела. Из других часто употребляемых физических величин и единиц отступления от десятичной системы сохранилось в градусной мере угла, когда окружность делится на 360 градусов, а градус на минуты и секунды.

Совершая исторический экскурс в метрологию, не следует забывать, что все сказанное в полной мере относится только к странам-участницам Метрической конвенции. Во многих странах до сих пор сохраняется своя особая, иногда экзотическая система физических величин и единиц. Среди этих стран, как это ни странно, находятся Соединенные Штаты Америки - современная супердержава. Внутри этой страны до сих пор в обиходе величины и единицы старой Англии. Даже температуру там принято измерять в градусах Фаренгейта.

В связи с вышеизложенным знакомство с системами единиц, отличными от системы СИ, знакомство с различными системами счета единиц при измерениях в настоящее время носят не только познавательный характер. При расширении международных контактов может оказаться так, что знание альтернативных систем величин и единиц сослужит пользователю добрую службу.

При изложении основополагающих моментов, относящихся к системе СИ, и при рассмотрении отдельных видов измерений мы иногда будем возвращаться к историческим корням выбора тех или иных физических величин. Сейчас важно помнить, что рассматриваемая проблема оптимального выбора физических величин и единиц будет существовать всегда, так как научно-технический прогресс постоянно предоставляет новые возможности в практике измерений. Сегодня это лазеры и синхротронное излучение, и завтра, возможно, появятся новые горизонты, опирающиеся на «теплую сверхпроводимость» или какое-либо замечательное достижение человеческой мысли.

Наши рекомендации