Биологические пруды бывают с естественной и искусственной аэрацией (пневматической или механической), контактные, проточные, серийные (состоящие из каскада прудов)
Искусственная аэрация позволяет значительно интенсифицировать процессы биохимической очистки сточных вод, увеличить глубину пруда до 3-4 м, что стабилизирует процесс и позволяет сделать биопруды значительно компактнее.
Биологические пруды представляют собой мелкие котлованы глубиной от 0,5-1 м при естественной аэрации и до 3-4,5 м (в зависимости от характеристики аэрирующего устройства) при искусственной. Располагают их на нефильтрующих или слабофильтрующих грунтах.
Как правило, биологические пруды имеют прямоугольную форму и вытянуты по ходу движения воды, при применении самодвижущихся механических аэраторов могут быть круглыми. Соотношение длины к ширине в биологических прудах с естественной аэрацией должно быть 1:15, при искусственной – 1:3. Во избежание образования застойных зон сточную воду в биологические пруды подают рассредоточено.
Направление движения сточной жидкости в биологических прудах должно быть перпендикулярно направлению господствующих ветров.
В пруды для глубокой очистки допускается направлять сточную воду с БПКполн не более 25 мг/л – для прудов с естественной аэрацией и не более 50 мг/л – для прудов с искусственной аэрацией.
По характеру протекающих в биологическом пруду процессов они подразделяются на три основных вида: аэробные, факультативные и анаэробные.
Аэробные биологические пруды содержат кислород по всей глубине воды, которая составляет обычно 0,3 – 0,45 м, что достигается за счет реаэрации и процессов фотосинтеза.
Факультативные биологические пруды, имеющие глубину от 1,2 до 2,5 м, наиболее часто применяются для глубокой очистки сточных вод. Также эти пруды называют аэробно-анаэробными. В верхних слоях развиваются аэробные культуры, в придонных – факультативные аэробы и анаэробы, способные осуществлять процессы метанового брожения.
Насыщение воды кислородом происходит за счет процессов фотосинтеза, осуществляемого водорослями. В прудах также в той или иной мере представлена микро- и макрофауна: простейшие черви, коловратки, насекомые и др.
Анаэробные биологические пруды работают с очень высокими нагрузками по органическим загрязнениям. Основные биохимические процессы, протекающие в них, - образование кислот и метановое брожение.
В последнее время широкое распространение получили биологические пруды с высшей водной растительностью (ВВР). В таких прудах по определенной схеме высаживают такие водные культуры, как камыш, тростник, рогоз, телорез и др. Растения интенсифицируют процесс очистки, удаляют биогенные элементы, активно используя их в своем питании, изымают из воды и аккумулируют тяжелые металлы, радиоактивные изотопы и другие специфические загрязнения. Выделяемые ВВР фитонциды способствуют обеззараживанию воды. Культивирование ВВР предпочтительнее, чем использование для изъятия биогенных элементов и других загрязнений одноклеточных и мелких водорослей. Это объясняется тем, что ВВР очень быстро развивается, следовательно, потребляет большое количество питательных веществ, изымая их из воды. Вместе с тем, ВВР легче удалить из биопруда, чем мелкие водоросли, что предотвращает вторичное загрязнение водоема, обусловленное разложением отмершей растительной биомассы.
В стоке, выходящем после биологических прудов, общее снижение концентрации загрязнений по БПКполн может достигать 60-98%, а по взвешенным веществам 90-98%.
Биологические пруды требуют создания широких санитарно-защитных зон (200 м).
Нитрификация
Особенностью биохимического окисления органических веществ в воде является сопутствующий ему процесс нитрификации, искажающий характер потребления кислорода
Нитрификация-процесс биологического превращения восстановленных соединений азота в окисленные неорганические по схеме:
|
|
3 6 9 12
Рис. 3. Изменение характера потребления кислорода при нитрификации.
Нитрификация протекает под воздействием особых нитрифицирующих бактерий — Nitrozomonas, Nitrobacter и др. Эти бактерии обеспечивают окисление азотсодержащих соединений, которые обычно присутствуют в загрязненных природных и некоторых сточных водах, и тем самым способствуют превращению азота сначала из аммонийной в нитритную, а затем и нитратную формы.
Процесс нитрификации происходит и при инкубации пробы в кислородных склянках. Количество кислорода, пошедшее на нитрификацию, может в несколько раз превышать количество кислорода, требуемое для биохимического окисления органических углеродсодержащих соединений. Начало нитрификации можно зафиксировать по минимуму на графике суточных приращений БПК за период инкубации. Нитрификация начинается приблизительно на 7-е сутки инкубации (см. рис. 9), поэтому при определении БПК за 10 и более суток необходимо вводить в пробу специальные вещества — ингибиторы, подавляющие жизнедеятельность нитрифицирующих бактерий, но не влияющие на обычную микрофлору (т.е. на бактерии — окислители органических соединений). В качестве ингибитора применяют тиомочевину (тиокарбамид), который вводят в пробу либо в разбавляющую воду в концентрации 0,5 мг/мл.
В то время как, и природные, и хозяйственно-бытовые сточные воды содержат большое количество микроорганизмов, способных развиваться за счет содержащихся в воде органических веществ, многие виды промышленных сточных вод стерильны, или содержат микроорганизмы, которые не способны к аэробной переработке органических веществ. Однако микробы можно адаптировать (приспособить) к присутствию различных соединений, в том числе токсичных. Поэтому при анализе таких сточных вод (для них характерно, как правило, повышенное содержание органических веществ) обычно применяют разбавление водой, насыщенной кислородом и содержащей добавки адаптированных микроорганизмов. При определении БПКполн промышленных сточных вод предварительная адаптация микрофлоры имеет решающее значение для получения правильных результатов анализа, т.к. в состав таких вод часто входят вещества, которые сильно замедляют процесс биохимического окисления, а иногда оказывают токсическое действие на бактериальную микрофлору.
Для исследования различных промышленных сточных вод, которые трудно подвергаются биохимическому окислению, используемый метод может применяться в варианте определения «полного» БПК (БПКполн.).
Если в пробе очень много органических веществ, к ней добавляют разбавляющую воду. Для достижения максимальной точности анализа БПК анализируемая проба или смесь пробы с разбавляющей водой должна содержать такое количество кислорода, чтобы во время инкубационного периода произошло снижение его концентрации на 2 мг/л и более, причем остающаяся концентрация кислорода спустя 5 суток инкубации должна составлять не менее 3 мг/л. Если же содержание РК в воде недостаточно, то пробу воды предварительно аэрируют для насыщения кислородом воздуха. Наиболее правильным (точным) считается результат такого определения, при котором израсходовано около 50 % первоначально присутствующего в пробе кислорода.
В поверхностных водах величина БПК5 колеблется в пределах от 0,5 до 5,0 мг/л; она подвержена сезонным и суточным изменениям, которые, в основном, зависят от изменения температуры и от физиологической и биохимической активности микроорганизмов. Весьма значительны изменения БПК5 природных водоемов при загрязнении сточными водами.
Норматив на БПКполн. не должен превышать: для водоемов хозяйственно-питьевого водопользования — 3 мг/л для водоемов культурно-бытового водопользования — 6 мг/л. Соответственно можно оценить предельно-допустимые значения БПК5 для тех же водоемов, равные примерно 2 мг/л и 4 мг/л.
Денитрификация
Денитрификация-микробиологический процесс восстановления окисленных соединений азота (нитратов, нитритов) до газообразных азотистых продуктов (обычно до N2):
Денитрификация происходит в результате жизнедеятельности бактерий, факультативных анаэробов, использующих в отсутствие кислорода нитраты и нитриты в качестве окислителей (анаэробное дыхание). Процесс сопряжен с окислением органических веществ и катализируется особыми ферментами. В ходе денитрификации азот удаляется из почвы и воды в виде газообразного N2, поступающего в атмосферу.
Процесс денитрификации активно протекает во влажных, плохо аэрируемых или затопляемых почвах, эвтотрофных водоемах, при рН 7-8, достаточном количестве нитратов и легкодоступного органического вещества. Денитрификацию считают главной причиной потерь азота в земледелии - удобрения могут утрачивать в результате денитрификации до 50% связанного азота. Хотя процессы денитрификации осуществляются микроорганизмами не с целью получения азота, но именно они «замыкают» круговорот азота в экосистеме, возвращая газообразный N2 в атмосферу.
Денитрификация - процесс, обратный превращению аммония в нитриты и далее - в нитраты. Разница состоит в том, что нитрификация - процесс окислительный, который протекает в присутствии кислорода. Такие процессы еще называют аэробными. Процесс денитрификации, напротив, является анаэробным, то есть протекает без доступа кислорода. При этом происходит последовательное восстановление нитратов в нитриты, затем в оксид азота, закись азота и, наконец, азот.
В сущности, процесс денитрификации завершает полный цикл круговорота азота в водоеме. Весь азот, который поступил удаляется в атмосферу.
Несложный на первый взгляд процесс в аквариуме может стать совсем непростым и трудно контролируемым. Дело в том, что процесс восстановления протекает при непосредственном участии факультативных анаэробных бактерий Pseudomonas, Micrococcus, Bacillus, Denitrobacillus. В отличие от нитрификации, для успешной реализации которой нужны бактерии Nitrosomonas и Nitrobacter, вода, содержащая аммоний или нитриты, и кислород, денитрификация - достаточно энергоемкий процесс.
Круговорот азота в настоящее время подвергается сильному воздействию со стороны человека. К значительным изменениям в цикле азота приводят процессы:
- массовое производство азотных удобрений и их использование приводит к избыточному накоплению нитратов;
- подавление деятельности микроорганизмов в результате загрязнения почвы отходами промышленности приводит к снижению скорости превращения аммиака в нитраты;
- азот, поступающий на поля в виде удобрений, теряется из-за отчуждения урожая, выщелачивания и денитрификации, происходит накопление аммонийных удобрений в почве;
- в результате промышленной фиксации молекулярного азота из атмосферы с целью производства азотных удобрений резко нарушается природное азотное равновесие.
Однако эти процессы носят локальный характер. Гораздо большее значение имеет поступление оксидов азота в атмосферу при сжигании топлива на ТЭЦ, транспорте, заводах, особенно в промышленных районах. Под воздействием излучения в атмосфере происходят реакции углеводородов с оксидами азота с образованием высокотоксичных и канцерогенных соединений.
Заключение
Ещё в городах древнего Египта, Греции и Рима существовали канализационные системы, по которым отходы жизнедеятельности людей и животных транспортировались в водоёмы – реки, озера и моря. В Древнем Риме перед сбросом в Тибр канализационные стоки накапливались и выдерживались в накопительном пруде-отстойнике-клоаке (cloaca maxima). В Средние века этот опыт был в значительной степени забыт, потом, экскременты людей и животных, выливались на городские улицы и удалялись эпизодически. Это являлось причиной загрязнения и заражения источников питьевой воды и приводило к возникновению эпидемий холеры, тифа, амебной дизентерии и др. В начале 19 века в Англии был изобретен туалет с водяным смывом (water closet, WC). Возникла очевидная необходимость в обработке сточных вод и предотвращения их попадания в источники питьевой воды. Сточные воды собирали и выдерживали в больших емкостях, осадок использовали в качестве удобрений. В начале двадцатого века были разработаны интенсивные системы очистки бытовых сточных вод, включая поля орошения, где вода очищалась, фильтруясь через почву, струйные фильтры со щебневой и песчаной загрузкой, а также резервуары с принудительной аэрацией – аэротенки. Последние являются основным узлом современных станций аэробной очистки городских сточных вод.
Преимуществом аэробной очистки является высокая скорость и использование веществ в низких концентрациях. Существенными недостатками, особенно при обработке концентрированных сточных вод, является высокие энергозатраты на аэрацию и проблемы, связанные с обработкой и утилизацией больших количеств избыточного ила. Аэробный процесс используется при очистке бытовых, некоторых промышленных и свиноводческих сточных вод с ХПК не выше 2000. Исключить указанные недостатки аэробных технологий может предварительная анаэробная обработка концентрированных сточных вод методом метанового сбраживания, которая не требует затрат энергии на аэрацию и более того сопряжена с образованием ценного энергоносителя – метана. Преимуществом анаэробного процесса является также относительно незначительное образование микробной биомассы. К недостаткам следует относить невозможность удаления органических загрязнений в низких концентрациях. Для глубокой очистки концентрированных сточных вод анаэробную обработку следует использовать в комбинации с последующей аэробной стадией. Выбор технологии и особенности обработки сточных вод определяется содержанием органических загрязнений в них.
Сточные воды больших городов и небольших поселков значительно отличается по концентрации органических загрязнителей. Содержание органических загрязнителей в сточных водах больших городов не превышает 500 мг/л, составляя обычно 200–300 мг/л. Бытовые сточные воды небольших населенных пунктов содержат больше органики, от 500-1000 г./л и более. В современных дачных и коттеджных поселках часто туалетные и кухонные сточные воды, содержащие большое количество органических загрязнений, отделяются от стоков ванных комнат. Для очистки сточных вод интенсивно развивающихся коттеджных поселков строятся локальные очистные сооружения, для пуска которых и вывода на рабочий необходимо использовать активный ил городских станций аэрации или специальные микробные препараты.
Список использованной литературы
1. Васильев Г.В., Ласков Ю.М., «Водное хозяйство и очистка сточных вод предприятий текстильной промышленности». М.: Легкая индустрия, 1976.
2. Вишаренко В.С. «Принципы управления качеством окружающей среды городов. Урбоэкопогия.» М.: Наука. 1990.
3. Стольберг Ф.В. «Экология города» учебник. К.: Либра. 2000.
4. Трочешников Н.С., Родионов А.И., Кельцев И.В., «Техника защиты окружающей среды» Учебное пособие для ВУЗов. – М.: Химия, 1981.
5. Юрьев Б.Т. «Очистка сточных вод малых объектов». Рига, Авотс, 1983.