Тема: гигиеническая оценка микроклимата

УЧЕБНЫЙ МАТЕРИАЛ ДЛЯ ВЫПОЛНЕНИЯ ЗАДАНИЯ

Микроклимат помещений характеризуется совокупностью таких факторов, как атмосферное давление, температура, влажность, скорость движения воздуха и тепловое излучение.

Влияние микроклимата на организм человека определя­ется характером отдачи тепла в окружающую среду. Отдача тепла человеком в комфортных условиях происходит за счет теплоизлучения (до 45%), теплопроведения — конвекции, кондукции (30%), испарения пота с поверхности кожи (25%). Наиболее часто неблагоприятное влияние микроклимата обусловлено повышением или понижением температуры, влажности или скорости движения воздуха.

Высокая температура воздуха в сочетании с повышенной влажностью и малой скоростью воздуха резко затрудняет отдачу тепла путем конвекции и испарения, в результате чего возможно перегревание организма. При низкой температуре, высокой влажности и скорости воздуха наблюдается противо­положная картина—переохлаждение. При высокой или низ­кой температуре окружающих предметов, стен снижается или увеличивается отдача тепла путем излучения. Возрастание влажности, т. е. насыщенности воздуха помещения водяными парами, приводит к снижению отдачи тепла испарением.

Неблагоприятный микроклимат производственного поме­щения может отрицательно влиять на самочувствие и работо­способность человека, а в определенных случаях может при­вести к расстройству здоровья. Особенно чувствительны к изменению микроклиматических условий лица с сердечно­сосудистыми, нервно-психическими и другими заболева­ниями.

По состоянию микроклимата можно судить об эффектив­ности воздухообмена в помещении, в частности о работе приточно-вытяжной вентиляции.

Микроклиматические условия в лечебно-профилактических учреждениях имеют важное значение в общем комплексе лечебных мероприятий. Для правильной оценки микроклиматических условий в лечебно-профилактических учреждениях врачу необходимо освоить устройство приборов, методические подходы исследования физических свойств воздушной среды и умение даватьим гигиеническую оценку.

ТЕМА 1: МЕТОДЫ ИССЛЕДОВАНИЯ И ГИГИЕНИЧЕСКАЯ ОЦЕНКА ТЕМПЕРАТУРЫ ВОЗДУХА.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Физиолого-гигиеническое значение температуры воздуха.

2. Радиационная температура и ее гигиеническое значение.

3. Особенности неблагоприятного воздействия высоких, низких температур и их профилактика.

4. Теплообмен человека с окружающей средой.

5. Требования к температурному режиму (допустимые его колебания в течение суток при центральном и местном отоплении, колебания по вертикали и горизон­тали) в жилых, общественных зданиях и больничных помещениях. Нормы опти­мальных температур в больничных помещениях различного назначения.

6. Приборы, используемые для определения температуры воздуха, радиационной температуры, принципы их устройства и правила работы. Методы измерения температуры воздуха.

7. Отличительные особенности устройства и принцип работы максимального и минимального термометров.

8. Устройство термографа и правила регистрирования температуры данным при­бором.

Наиболее благоприятной температурой воздуха в жилых помещениях для человека, находящегося в покое и одетого в обычный домашний костюм, является 18-200 C, а радиационной - 200 С при нормальной влажности (40-60%) и подвиж­ности - (0,2 - 0,3 м/сек) воздуха. Температура воздуха выше 24-250 C и ниже 14-150 С считается неблагоприятной, способной нарушать тепловое равновесие организма и послужить причиной развития различных заболеваний. Однако при выполнении физической работы или при изменении влажности и подвижности воздуха уровни оптимальных температур будут иными. Так, при физической работе средней тяжести оптимальной температурой воздуха считается 10-150 C, а при тяжелой - понижается до 5-100 С.

При наличии в помещении источников тепловой радиации, а именно: устано­вок или приборов, с поверхности которых возможно излучение пониженной или высокой температуры, а также при наличии в помещениях большой площади остекления следует учитывать совместное воздействие на организм конвекцион­ного и лучистого тепла. В этих условиях человек не только подвергается влиянию температуры воздуха, но и находится в зоне действия лучистого тепла от имею­щихся в обследуемом помещении источников нагретых или охлажденных повер­хностей (поверхность окон и др.).

Особое значение имеет определение радиационной температуры при неравно­мерной тепловой нагрузке на человека в производственных условиях, а также при нерациональном размещении (в непосредственной близости к окнам, дверным проемам и др.) больных в лечебных учреждениях. В этих условиях определяют радиационную температуру, т.е. температуру, показывающую совместное дейст­вие всех видов радиационного воздействия,

В лечебных учреждениях нормативы температуры воздуха, приведенные в таблице 3, и рекомендуемых средних величин общей и радиационной температур в таблице 4, обосновываются производственным назначением помещений, кон­тингентом госпитализированных больных и особенностями их заболеваний.

Таблица 3. Расчетная температура воздуха и допустимые ее перепады по горизонтали и вертикали в отапливаемых помещениях

ПОМЕЩЕНИЯ Темпе­ратура Колебания тем­пературы, 0С
по го­ризон­тали по вер­тикали
1. Жилая комната квартиры или общежития 2,5
2. Палаты для взрослых терапевтических больных, помещения для матерей детских отделений, помещения гипотерапии 2,5
3. Палаты для туберкулезных больных (взрослых, детей) 2,5
4. Палаты для больных гипотиреозом 2,5
5. Послеоперационные палаты, реанимационные залы, палаты ин­тенсивной терапии, родовые, боксы, операционные, наркозные, палаты для ожоговых больных, барокамеры 2,5
6. Послеродовые палаты 2,5
7. Палаты для недоношенных, грудных, новорожденных и травмированных детей 2,5
8. Боксы, полубоксы, фильтр-боксы, предбоксы 2,5
9. Палатные секции инфекционного отделения 2.5
10. Предродовые, фильтры, приемно-смотровые боксы, перевязочные, манипуляционные. предоперационные процедурные, комнаты для кормления детей в возрасте до одного гола, помещения для прививок 2,5
11. Стерилизационные при операционных 2.5

Таблица 4. Рекомендуемые величины общей и радиационной температур для различных помещений

Вид помещения Средняя темпе­ратура воздуха Радиаци­онная темпе­ратура
1. Жилые помещения 18-20
2. Учебные лаборатории, классы 17-19
3. Аудитории, залы 16-18 16-17
4. Физкультурные залы 12-16
Ванные комнаты, бассейн 20-23 20-22
6. Врачебные кабинеты 22-24 22-24
7. Операционные 25-30 25-30
8. Палаты для соматических больных 20-23 20-22
9. Палаты для температурящих больных 18-20 18-20
10. Палаты для ожоговых больных 26-30 26-30

Измерение температуры воздуха, поверхностей оборудования, предметов в поме­щениях различного назначения производится термометрическими приборами. Термометры по своему назначению разделяются на измеряющие, рассчитанные на определение температуры в момент наблюдения, и фиксирующие, позволяющие полу­чить максимальное или минимальное значение температуры за определенный период контроля (сутки, неделя, месяц и т. д.).

Кроме того, термометры подразделяют­ся на бытовые, аспирационные, минимальные, максимальные. По своему назна­чению термометры подразделяются на пристенные, водяные, почвенные, хими­ческие, технические, медицинские и др.

Бытовой термометр - комнатный или уличный спиртовой термометр, до­статочно точный для наблюдения за температурой воздуха. Ртутные термометры - применяются для измерения температур от -350 C до +3570 C. В пределах высоких температур показания ртутного термометра более точные вследствие постоянства коэффициента расширения ртути.

К измеряющим термометрам относятся спиртовые, ртут­ные и электрические, к фиксирующим — максимальный и минимальный термометры (рис. 2).

тема: гигиеническая оценка микроклимата - student2.ru

Рис. 2. Термометры: а — максимальный; б — минимальный.

Максимальный (ртутный) термометр предназначен для регистрации самой высокой температуры. Это обеспечивается за счет специальной конструкции ртутного резервуара, в дно которого впаян стеклянный штифт, последний одним концом входит в капиллярную трубку, сужая ее просвет.

При повышении температуры воздуха ртуть, расширяясь, поднимается вверх через суженный просвет капилляра. При понижении температуры воздуха находящаяся в капилляре ртуть из-за его сужения не в состоянии возвратиться в ре­зервуар. Перед началом измере­ния, чтобы возвратить ртуть в резервуар, термометр несколько раз встряхивают. Измерение тем­пературы воздуха проводят при горизонтальном положении тер­мометра.

Минимальный термометр (спиртовой) используется для определения самой низкой темпе­ратуры воздуха. Внутри его ка­пиллярной трубки, в спирту, на­ходится стеклянный штифт с утолщениями в виде булавочных головок на концах. При повы­шении температуры воздуха спирт, расширяясь, свободно обтекает штифт, не изменяя его положения. В свою очередь при понижении температуры спирт, сжимаясь, силами поверхностно­го натяжения мениска перемеща­ет штифт в сторону резервуара, устанавливая в положение, соот­ветствующее минимальной тем­пературе в данный момент. Пе­ред измерением температуры штифт необходимо привести в соприкосновение с мениском спирта, подняв резервуар вверх, и затем установить термометр в рабочее, строго горизонтальное положение.

Для непрерывной регистра­ции колебаний температуры воз­духа в течение определенного отрезка времени (сутки, неделя) применяют самопишущие прибо­ры — термографы. Эле­ментом, воспринимающим изменения температуры, у этих приборов служит биметал­лическая пластинка. С повышением или понижением темпе­ратуры воздуха кривизна биметаллической пластинки изме­няется. Эти колебания через систему рычагов передаются на перо с чернилами, которое регистрирует на ленте, закрепленной на вращающемся с определенной скоростью барабане, температурную кривую.

Существуют три системы термометров, отличающихся друг от друга градуировкой шкалы:

1. Термометры Цельсия - 0 на шкале обозначает точку таяния льда, 100 - точку кипения воды.

2. Термометры Реомюра - 0 точка таяния льда, 80 - точка кипения воды.

3. Термометры Фаренгейта - +32 обозначает точку таяния льда, +212 - точку кипения воды. Для перевода градусов температуры с одной системы термометров на другую пользуются следующей таблицей:

10 Цельсия (C) = 4/5 градуса Реомюра = 9/5 градуса Фаренгейта.

10 Реомюра (R) = 5/4 градуса Цельсия = 9/4 градуса Фаренгейта.

10 Фаренгейта (F) = 5/9 градуса Цельсия = 4/9 град. Реомюра.

При переводе градусов Фаренгейта на градусы С и R следует предварительно вычесть из них 32, а при переводе на Фаренгейта к результатам перечисления следует прибавить 32.

ПРАВИЛА ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ ВОЗДУХА.

Измерение температуры воздуха в закрытых помещениях, школах, кварти­рах, детских, лечебных учреждениях, производственных помещениях и др. про­водится с соблюдением следующих правил: при измерении температуры воздуха необходимо защищать термометр от действия лучистой энергии печей, ламп и прочих открытых источников энергии. В жилых помещениях измерение темпера­туры воздуха проводят на высоте дыхания (1,5 м от пола) в центре комнаты. Для более точных измерений одновременно термометры устанавливаются в центре комнаты, наружном и внутреннем углах на расстоянии 0,2 м от стен.

В лечебных учреждениях измерение температуры воздуха дополнительно прово­дится и на высоте 70 см от пола. Перепады температуры определяются и оценива­ются по вертикали и горизонтали. Для определения перепада температуры по вертикали, термометры устанавливаются в центре и по углам поме­щения на высоте 0,2; 0,7 и 1,5 м от пола. Для определения перепада температуры по горизонтали вычисляется разница между максимальной и минимальной тем­пературой отдельно по каждому уровню (0,2; 0,7 и 1,5 м) во всех измеренных участках помещения. Суточный перепад температуры в палатах измеряется с помощью максимального и минимального термометров, которые устанавливают­ся в центре помещения на уровне 0,7 и 1,5 м от пола.

ПРОТОКОЛ

исследования и оценки температурного режима

в _________________________________________________________________

(наименование объекта)

Дата и время исследования ___________________________________________

Место измерения Высота измерения Наружный угол комнаты Центр комнаты Внутрен­ний угол комнаты Колебания температуры по горизонтали
0,1-0,15м        
0,7м        
1,5м        
Колебания температуры по вертикали        
Средняя температура        

Заключение:

Подпись исследователя

ТЕМА 2. МЕТОДЫ ИССЛЕДОВАНИЯ И ГИГИЕНИЧЕСКАЯ ОЦЕНКА БАРОМЕТРИЧЕСКОГО ДАВЛЕНИЯ.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Физиолого-гигиеническое значение атмосферного давления и единицы его измерения.

2. Влияние на организм пониженного атмосферного давления и меры профилак­тики.

3. Влияние на организм повышенного атмосферного давления и меры профилак­тики.

4. Приборы для измерения атмосферного давления, их устройство и правила работы.

Давление атмосферы, способное уравновесить столб ртути высотой 760 мм при температуре 00 C на уровне моря и широте 450 , принято считать нормальным, равным 1 атмосфере, а в пересчете в гсктопаскали оно будет составлять 1013 гПа.

Для пересчета величины давления, выраженной в мм рт. ст., в гПа, надо дан­ную величину умножить на 4/3, и наоборот, для перевода гПа в мм рт. ст. надо умножить первую величину на 3/4.

Атмосферное давление измеряют с помощью ртутного барометра или барометра-анероида (рис. 3). При необходимо­сти непрерывной регистрации колебаний атмосферного дав­ления используют барограф (рис. 2). Основной частью этого прибора является анероидная коробка, реагирующая на изме­нения давления воздуха. При повышении давления стенки коробки прогибаются внутрь, а при снижении — выпрямля­ются. Эти движения передаются с помощью соединительной системы стрелке. Атмосферное давление в среднем колеблется в пределах 1013 ±26,5 гПа (760 ±20 мм рт. ст.).

тема: гигиеническая оценка микроклимата - student2.ru тема: гигиеническая оценка микроклимата - student2.ru

A B

Рис. 3. A - барометр-анероид; B – барограф

ОФОРМЛЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

Давление атмосферы по барометру-анероиду № ________

____________ мм рт. ст. или · 4/3 = ____________ мб или гПа

Показания снял (подпись)

ТЕМА 3. МЕТОДЫ ИССЛЕДОВАНИЯ И ГИГИЕНИЧЕСКАЯ ОЦЕНКА ВЛАЖНОСТИ ВОЗДУХА

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Физиолого-гигиеническое значение влажности воздуха.

2. Какие понятия применяются для характеристики влажности воздуха и в каких единицах они выражаются.

3. Гигиенические нормативы влажности в помещениях и мероприятия, направ­ленные на улучшение температурно-влажностного режима помещений.

4. Приборы, используемые для определения влажности воздуха, их устройство, принцип действия и правила работы.

При гигиенической оценке влажности воздуха исполь­зуются следующие ее характеристики: абсолютная, макси­мальная, относительная влажность; физический дефицит влажности и др.

Влажность воздуха зависит от содержания в нем водяных паров. В практике чаще всего для характеристики влажности воздуха пользуются значениями относительной влажности и дефицита насыщения воздуха водяными парами.

Абсолютная влажность — упругость (парциальное давление) водяных паров, находящихся в данное время в воздухе, выраженное в миллиметрах ртутного столба.

Максимальная влажность – упругость водяных паров при полном насыщении воздуха влагой при данной температуре.

Относительная влажность – отношение абсолютной влажности к максимальной, выраженной в процентах (т.е. насыщение воздуха водяными парами в % от максимально возможного)

Дефицит насыщения (физический дефицит) – разность между максимальной и абсолютной влажностью.

Приборы, используемые для определения влажности, называются психрометрами. Бывают станционные психрометры (Августа) и аспирационные (Ассмана).

Психрометр Августа состоит из двух спиртовых термометров, укрепленных рядом в открытом футляре. Резервуар одного из термометров обернут тонкой тканью, конец которой опущен в трубку - сосуд с дистиллированной водой. С поверхности влажного термометра испаряется вода - тем сильнее, чем суше воздух, поэтому он показы­вает более низкую температуру, чем сухой термометр, и разница в показаниях термометров будет тем больше, чем суше воздух.

Психрометр устанавливают на высоте 1,5 м, ограждая от источников лучистой энергии и случайных движений воздуха. Продолжительность наблюдений 10-15 минут.

Абсолютная влажность вычисляется по формуле:

A = f – a · (t1 - t2) · B мм рт. ст. (1)

где:

А - искомая абсолютная влажность,

f - максимальная влажность (по таблице 5) при t2,

а - психрометрический коэффициент (для атмосферного воздуха - 0,00074; для ком­натного - 0,0011).

t1 - температура сухого термометра,

t2 - температура влажного термометра,

В - барометрическое давление (мм рт. ст.)

Относительная влажность определяется по таблице (табл. 4) или вычисляетсяпо формуле:

тема: гигиеническая оценка микроклимата - student2.ru , % (2)

где:

P - искомая влажность (относительная), %

А - абсолютная влажность,

М - максимальная влажность по таблице при температуре сухого термо­метра.

Таблица 3. Максимальная влажность воздуха при различной температуре

Темпе­ратура Напряжение водяных паров в мм рт. ст. Вес водяных паров, насыщаю­щих воздух, гр/м Температура Напряжение водяных паров в мм рт.ст. Вес водяных паров, насыщаю­щих воздух, гр/м
-5 3,113 3,360 13,530 13,552
-4 3,387 3,614 14,421 14,391
-3 3,662 3,902 15,357 15,329
-2 3,995 4,194 16,364 16,203
-1 4,267 4,522 17,391 17,164
4,600 4,874 18.495 18,204
4,940 5,210 19,659 19,284
5,302 5,574 20,888 20,450
5,687 5,963 22,184 21,604
6,097 6,370 23,550 22,867
6,534 6,791 24.988 24,190
6,998 7,260 26,505 25,582
7,492 7,734 28,101 27,004
8.017 8,252 29,782 28,529
8,574 8,713 31,584 30,139
9,165 9.372 33,406 31,890
9,792 9,976 35,359 33,640
10,457 10,617 37,411 35,480
11,162 11,284 39.565 37,400
11,908 12,018 41,827 39,410
12,699 12,763 44,201 41,510
      46,691 43,710

Аспирационный психрометр (Ассмана) (рис. 4) также состоит из двух, но ртутных термометров, закрепленных в специальной оправе, имеющей заводной механизм с вентилятором, с помощью которого обес­печивается равномерное движение воздуха около резервуаров обоих термомет­ров. Резервуары с ртутью окружены двойными металлическими гильзами, пре­дохраняющими термометры от нагревания лучистым теплом и движения наруж­ного воздуха. Эти условия дают возможность для более точного определения влажности воздуха, и поэтому величина "а" в формуле является постоянной.

Перед наблюдением ткань на одном из резервуаров термометра смачивается водой из пипетки. Затем необходимо завести ключом пружину вентилятора, прибор установить в месте наблюдения (на штатив или крюк), через 3-4 мин. температура обоих термометров устанавливается и можно снять показания при работающем вентиляторе.

тема: гигиеническая оценка микроклимата - student2.ru

Рис. 4. Психрометр Ассмана (аспирационный)

Абсолютная влажность вычисляется по формуле:

тема: гигиеническая оценка микроклимата - student2.ru , мм рт. ст. (3)

где:

K - искомая абсолютная влажность,

f - максимальная влажность при температуре влажного термометра (по

таблице 3).

0,5 - психрометрический коэффициент,

t1 - температура сухого термометра,

t2 - температура влажного термометра,

В - барометрическое давление (вмм рт.ст.) в момент наблюдения,

755 - среднее барометрическое давление

Определение относительной влажности производят путем пересчета по формуле (2), или определяют по таблице для аспирационного психрометра (табл. 5)

Для измерения относительной влажности существует прибор, который носит название гигрометра (рис. 5). Он со­стоит из воспринимающего элемента — обезжиренного воло­са, один конец которого укреплен на верхней части рамы, другой (нижний) перекинут через блок и прикреплен к стрелке. В данном устройстве используется свойство волоса изменять свою длину в зависимости от влажности. С увеличением влажности воздуха волос удлиняется, с уменьшением, наобо­рот, укорачивается, приводя в движение стрелку, которая перемещается по шкале, показывающей относительную влажность в процентах.

тема: гигиеническая оценка микроклимата - student2.ru

Рис. 5. Гигрометр

Для постоянной и систематической записи колебаний влажности воздуха в течение определенного промежутка вре­мени (сутки, неделя), применяют самопишущие приборы – гигрографы (рис. 6), состоя­щие из:

а) датчика влажности - пучок обезжиренных человеческих волос;

б) передаточного механизма;

в) регистрирующей части - стрелка с пером и барабан с часовым механизмом. Диаграммная бумажная лента разделена горизонтальными параллельными ли­ниями времени.

тема: гигиеническая оценка микроклимата - student2.ru

Рис. 6. Гигрограф

Таблица 4. Определение относительной влажности воздуха по психрометру Августа

Показа­ния су­хого термометра Показание влажного термометра, 0С
5,3 5.7 6,0 6,4 6,8 7,2 7,6 8,0 8,4 8,7 9.1 9,5 9,9 10,3 10,7 11.3 11,7 12,0
5,9 6,4 6.8 7,2 7,6 8.0 8,4 8,8 9.2 9,6 10,0 10,4 10,8 11.1 11.5 11.8 12,2 12,6 13,0
6.6 7.1 7.5 8,0 8,4 8,6 9.2 9.7 10,1 10.5 10.9 11,3 11,7 12.1 12,5 12,8 13,2 13,6 14,0
7,3 7,8 8,7 9,2 9,6 10.0 10,9 11,4 11,8 12,2 12,6 13,0 13,4 14.2 14,6 15.0
8,0 8,5 9.0 9.4 9,9 10,3 10.8 11,3 11,8 12,2 12,6 13,1 13.5 14,0 14,4 14.8 15,6 15.6 16.0
8,6 9,1 9,7 10,2 10,7 11,2 11.6 12,1 12,6 13,0 13,5 13,9 14,4 14,9 15,3 15,8 16.2 16,6 17,0
9,3 9,9 10.4 10,9 11,4 11,9 12,4 12,9 13,4 13,9 14,4 14,8 15,3 15.7 16,2 16.6 17,1 17.5 18.0
10,0 10,6 11,1 11,7 12,2 12,7 13.2 13.8 14,8 14,8 15,3 15,7 16,2 16,7 17,2 17,6 18,1 18,5 19,0
10,6 11,2 11,8 12,4 12,9 13,4 14,0 14,5 15.1 15,6 16,1 16,6 17,1 17,6 18,1 18,5 19.0 19,5 20,0
11,2 11,9 12,6 13.1 13,6 14,2 14.8 15.3 15,9 16,6 17,1 17.5 18,0 18.6 19,1 19,5 20,0 20,5 21,0
11,8 12,5 13.2 13,8 14,4 15.0 15.6 16.1 16.7 17,3 17,9 18,4 18.9 19,5 20,0 20,5 21,0 21,5 22,0
12.5 13.1 13,8 14.4 15.1 15.7 16,4 17.0 17.6 18,2 18,8 19,3 19,8 20,4 20.9 21,5 22,0 22,5 23,0
13,1 13.8 14,5 15,2 15,9 16,5 17,1 17,8 18,4 19,0 19,6 20,1 20,7 21,3 21.9 22,4 23,0 23,0 24,0
13.7 14,5 15.2 15,9 16,6 17,2 17.9 18,5 19,2 19,8 20,5 21.2 21,7 22,2 22,8 23,3 23,9 24.4 25.0
Относит. влажность %

Таблица 5. Определение относительной влажности по показаниям аспирационного психрометра

Показания сухого термометра Показание влажного термометра, 0C
 
                                     
                                   
                                 
                                 
                                 
                               
                               
                               
                             
                             
                           
                           
                           
                         
                         
                       
                       
                       
                     
                     

ПРОТОКОЛ

исследования и оценки относительной влажности воздуха

в ___________________________________________________________________

(наименование объекта)

1. Дата исследованиявремя час

2. Исследование проводилось психрометром_____________________________

3. Показания сухого термометра_________ 0 C

4. Показания влажного термометра________0 C

5. Расчет влажности по формуле:

6. Расчет влажности по таблице:

Заключение по влажностному режиму в обследованном помещении:

____________________________________________________________________________

Исследование проводил (подпись)

ТЕМА 4: МЕТОДЫ ИССЛЕДОВАНИЯ И ГИГИЕНИЧЕСКАЯ ОЦЕНКА ПОДВИЖНОСТИ ВОЗДУХА; ПОСТРОЕНИЕ И ОЦЕНКА РОЗЫ ВЕТРОВ.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Физиолого-гигиеническое значение подвижности воздуха.

2. Что такое "роза ветров", каково ее гигиеническое значение?

3. Гигиенические нормы подвижности воздуха в жилых помещениях и больнич­ной палате.

4. Профилактика неблагоприятного воздействия на человека больших и малых скоростей движения воздуха.

5. Какими способами определяют направление воздушных течений в открытой атмосфере и в помещении?

6. Какими приборами определяют подвижность воздуха в открытой атмосфере и в помещении, их устройство и правила работы?

Движение воздуха принято характеризовать направлением и скоростью. На­правление движения воздуха определяется точкой горизонта, откуда дует ветер, а скорость движения - расстоянием, пройденным массой воздуха в единицу вре­мени и выражается в м/сек.

Оба эти показателя имеют большое физиолого-гигиеническое значение, т.к. из­менение направления ветра служит показателем перемены погоды, а движение воздуха:

1) обеспечивает проветривание населенных мест, способствует рассеиванию и снижению атмосферных загрязнений;

2) является важнейшим показателем формирования микроклимата в открытой атмосфере и в помещениях;

3) оказывает большое воздействие на состояние теплового ощущения, нервно-психической сферы организма, процессы терморегуляции и функции дыхания.

Наиболее благоприятной скоростью ветра в наружной атмосфере в летнее время при обычной легкой одежде считается 1-4 м/сек. Раздражающее действие ветра проявляется при скорости выше 6-7 м/сек.

В жилых помещениях, классах, групповых комнатах, детских, лечебных учреж­дениях оптимальной считается подвижность воздуха в пределах 0,2-0,4 м/сек; при меньшей скорости имеет место недостаточный воздухообмен, а при движени­ях воздуха выше 0,4 м/сек отмечается неприятное ощущение сквозняка. В спор­тивных залах допускается скорость движения воздуха до 0.5-0,6 м/сек.

Способы определения направления воздушных течений. Направление ветра в открытой атмосфере измеряется с помощью специального прибора - флюгера и обозначается начальными буквами наименований сторон све­та: С -север, Ю - юг, В - восток, 3 - запад. Кроме четырех главных румбов, использу­ются промежуточные, находящиеся между ними, и в таких условиях направле­ние ветра определяется восемью румбами.

В помещении направление движения воздуха можно определить по отклонению пламени свечи, по отклонению листков папиросной бумаги, подвешенных на нитке; по дыму, исходящему от зажженного кусочка ваты, пропитанного раство­ром четыреххлористого титана (TiCl4) и укрепленного на конце проволоки. В гигиенической практике имеет значение не только одномоментное направление, как таковое. Велика роль господствующего направления ветра, которое устанавливается на основании обобщения многолетних метеорологических наблюдений повторяемости ветра по румбам, характерной для данной мест­ности.

СОСТАВЛЕНИЕ "РОЗЫ ВЕТРОВ". "Роза ветров" - это графическое изображение повторяемости ветров по румбам (сторонам света), за определенный период (месяц, сезон, год) или за несколько лет.

Для составления "розы ветров" надо сложить число всех случаев ветра и штиля за известный срок, полученная сумма принимается за 100, а число случаев ветра по каждому румбу (и штиля) вычисляется в процентах по отношению к сумме всех случаев ветра и штиля, принятой за 100.

После этого строят график. Для этого из центра проводят 8 линий, обозначающих 8 румбов (С, В, СВ, В, ЮВ, Ю, ЮЗ, 3, СЗ). Затем откладывают по всем линиям в одинаковом масштабе отрезки вычисленных процентных величин ветра всех 8 румбов и штиля, и соединяют последовательно вершины соседних между собой прямыми линиями. Из центра графика описывают окружность с радиусом, соот­ветствующим процентному числу штиля (рис.7).

тема: гигиеническая оценка микроклимата - student2.ru

Рис. 7. Роза ветров

Учитывая розу ветров, можно правильно разместить жилые, медицинские, аптечные и другие учреждения по отношению к источникам загрязнения воздуха (промышленные предприятия и др.). На рис. 7 роза ветров указывает на преимущественное северо-восточное направле­ние ветров в течение года, поэтому жилые дома, аптеки, больницы и т. д. следует размещать в северо-восточном направлении (наветренная сторона), а промышленные предприятия и другие источ­ники загрязнения - в юго-западном (подветренная сторона)

Приборы для измерения скорости движения воздуха (рис. 8.)

Скорость движения воздуха определяют с помощью анемометров (прямой способ) или кататермометров (косвенный способ). Чашечный анемометр (рис. 8A) предназначен для измерения скорости ветра от 1 до 50 метров в секунду. Воспринимающей частью прибора служит чашечная мельница, полусферы которой обращены в одну сторону. Вращение полусфер передается счетчику оборотов, который являясь регистрирующей частью прибора, ведет от­счет на циферблатах расстояния, пройденного воздушными массами.

Прибор имеет несколько циферблатов, где фиксируются единицы, десятки, сотни и тысячи метров расстояния изучаемого ветра.

тема: гигиеническая оценка микроклимата - student2.ru тема: гигиеническая оценка микроклимата - student2.ru тема: гигиеническая оценка микроклимата - student2.ru

A B C

Рис. 8. Анемометры: A – чашечный, B – крыльчатый, C – кататермометры

Крыльчатый анемометр (рис. 8B) предназначен для измерения скорости движения воздуха в пределах от 0,5 до 10 метров в секунду. Воспринимающей частью прибора является колесико с легкими алюминевыми крыльями, огражденными металли­ческим кольцом. Регистрирующая часть аналогично чашечному анемометру представлена тремя циферблатами.

Рабочее положение перечисленных анемометров должно быть таким, чтобы ло­пасти мельницы всегда были перпендикулярными направлению воздушного по­тока. Измерение скорости движения воздуха чашечным и крыльчатым анемомет­рами проводят в течение 1-2 мин. после чего счетчик выключают и записывают показания. Разность конечного и начального показаний делят на количество секунд работы анемометра.

ОПРЕДЕЛЕНИЕ СКОРОСТИ ДВИЖЕНИЯ ВОЗДУХА.

Чашечный и крыльчатый анемометры подносят к работающему вентилятору (открытой форточке) в выключенном состоянии, предварительно записав поло­жение стрелок на циферблатах, и после разгона полушарий одновременно вклю­чают анемометр и секундомер на 1-2 минуты, после чего выключают прибор и записывают показания циферблатов. Опре­деление производят 3 раза и берут среднее из трех измерений.

ПРОТОКОЛ

исследования и оценки подвижности воздуха

в ___________________________________________________________________

(наименование помещения)

1. Дата исследования ___________________________________________

2. Замеры движения воздуха проводились анемометром _____________

(каким)

3. Результаты первого замера __________________________ м/сек

4 .Результаты второго замера __________________________ м/сек

5. Результаты третьего замера _________________________ м/сек

6. Среднее из всех замеров ____________________________ м/сек

ЗАКЛЮЧЕНИЕ: Указать, соответствуют ли полученные данные гигиениче­ским нормативам. Обосновать мероприятия по оптимизации подвижности возду­ха в обследованном помещении.

Исследование проводил (подпись)

ТЕМА 5: МЕТОДЫ ИЗУЧЕНИЯ И ГИГИЕНИЧЕСКАЯ ОЦЕНКА КОМПЛЕКСНОГО ДЕЙСТВИЯ МЕТЕОФАКТОРОВ НА ОРГАНИЗМ.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Механизмы терморегуляции в организме

2. Физическая терморегуляция. Характеристика путей отдачи тепла и обуслав­ливающих их факторов.

3. Погода, ее определение и определяющие ее факторы. Влияние погоды на орга­низм человека.

4. Метеотропные реакции, заболевания и их профилактика.

5. Клиническая классификация погод, их характеристика и использование в работе врача.

6. Понятие о климате и климатообразующих факторах; классификация климатов и их физиолого-гигиеническая характеристика.

7. Влияние климата на здоровье, формирование, течение заболеваний и их про­филактика.

8. Проблема акклиматизации на современном этапе, и пути ее реализации.

9. Основные принципы закаливания организма, способы и методы закаливания организма.

10. Методы изучения комплексного влияния метеофакторов на организм,ихотличительные особенности, преимущества и недостатки.

11. Сущность метода определения охлаждающей способности воздуха; использу­емые для этого приборы,их устройство и правила работы.

12. Учение об эффективных температурах. Зона, линия комфорта.

Тепловое равновесие в организме человека, как и всех животных, возможно только при условии, если приход тепла равен расходу; в противном случае наблю­дается или перегревание или переохлаждение тела. В зависимости от характера питания, выполняемой работы, одежды, возраста, состояния здоровья и физиче­ских факторов окружающей среды (температуры, влажности, подвижности воз­духа, лучистой энергии) величины теплопродукции и теплоотдачи изменяются в широких пределах. Экспериментально установлено, что для поддержания тем­пературы тела на нормальном уровне необходимо, чтобы одетый человек терял при легкой работе 1,2-1,4 милликалории тепла в секунду с 1 см2 поверхности тела; при средней и тяжелой работе теплопотери возрастают в 2-3 и более раз. Непос­редственное определение величины теплопотерь организмом крайне сложно, поэтому пользуются различными косвенными способами их определения. Одним из данных способов является метод кататермометрии, позволяющий определить величину потери тепла физическим телом в зависимости от температуры и ско­рости движения воздуха. Хотя он и не может воспроизвести условия потери тепла с поверхности тела человека, которые, как известно, зависят не только от охлаж­дающей способности воздуха, но и от работы терморегуляторных систем организ­ма. С помощью данного метода установлено, что оптимальное тепловое самочув­ствие у лиц "сидячих" профессий при обычной одежде в помещениях наблюдается при величине охлаждения кататермометра в пределах 5,5-7,0 милликалории в секунду. При более высоких показаниях кататермометра данные группы людей будут испытывать холод, а при меньших - духоту; при показаниях кататермомет­ра 3,2 милликалории в секунду повышается потоотделение.

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ С КАТАТЕРМОМЕТРОМ. Кататермометры бывают двух типов: кататермометр Хилла, имеющий ци­линдрический резервуар и шаровой кататермометр. У кататермометраХиллашкала термометра разделена на градусы от 350 до 380, у шарового – от 330 до 400 (рис. 8С)

ПРИНЦИП РАБОТЫ С КАТАТЕРМОМЕТРОМ

Если нагреть кататермометр до температуры выше температуры окружающего воздуха, то при охлаждении он потеряет, главным образом, под влиянием наруж­ной температуры и движения воздуха, некоторое количество тепла. Вследствие постоянства теплоемкости спирта и стекла, из которых сделан прибор, он теряет при охлаждении с 380 до 350 строго определенное количество тепла, которое устанавливается лабораторным путем отдельно для каждого кататермометра. Эта потеря тепла с 1 см2 поверхности резервуара кататермометра выражается в милликалориях и обозначается на каждом кататермометре в виде его постоянного фактора - F.

ПОРЯДОК РАБОТЫ С КАТАТЕРМОМЕТРОМ

A. Прибор нагревают в горячей воде (65-70°) до тех пор, пока спирт не заполнит половины верхнего резервуара; вынув из воды, кататермометр вытирают насухо и помещают на штативе в исследуемое место, защищая при этом от действия лучистой энергии; фиксируют время опускания спирта с 380 до 350. Производят расчет по следующей формуле:

тема: гигиеническая оценка микроклимата - student2.ru , где

H - величина охлаждения прибора, характеризующая охлаждающую спо­собность воздуха при данных условиях мкал/см /сек;

F - фактор прибора;

a - количество секунд, в течение которых спирт опустился 380 до 350.

B. Определение скорости движения слабых потоков воздуха производится по эмпирическим формулам:

тема: гигиеническая оценка микроклимата - student2.ru 2 = (менее 1 м/сек)

тема: гигиеническая оценка микроклимата - student2.ru 2 = (более 1 м/сек),

где:

V - скорость движения воздуха в м/сек;

H - величина охлаждения кататермометра;

Q - разность между средней температурой тела 36,5° и температурой воздуха в комнате в момент исследования;

0,20 и 0,40, а также 0,1,3 и 0,47 - коэффициенты.

Однако производить все вычисления по данным формулам нет необходимости. Нужно предварительно определить, чему равно выражение H/Q, а затем по таб­лицам 6 и 7 найти соответствующую этой величине скорость движения воздуха в обследуемом помещении.

Таблица 6. Скорость движения воздуха меньше 1 метра в секунду с учетом поправок на температуру

Н Q Температура воздуха в градусах
10,0 12,5 15,0 17,5 20.0 22,5 25,0 26,0
0,27 - - - - 0,047 0,051 0,059
0,28 - - - 0,049 0,051 0,061 0,070 0,070
0,29 0,041 0,050 0,051 0,060 0,067 0,076 0,085 0,089
0,30 0,051 0,060 0,065 0,073 0,082 0,091 0,101 0,104
0,31 0,061 0,070 0,079 0,088 0,096 0,107 0,116 0,119
0,32 0,076 0,085 0,094 0,104 0,113 0,124 0,136 0,140
0,33 0,091 0,101 0,110 0,119 0,128 0,140 0,153 0,159
0,34 0,107 0,115 0,129 0,139 0,148 0,160 0,174 0,179
0,35 0,127 0.136 0,145 0,154 0,167 0,180 0,196 0,203
0,36 0,142 0,151 0,165 0,179 0.192 0,206 0,220 0,225
0,37 0,163 0,172 0,185 0.198 0,212 0,226 0,240 0.245
0,38 0,183 0,197 0,210 0,222 0,239 0,249 0,266 0,273
0,39 0,208 0,222 0,232 0,244 0,257 0,274 0,293 0,300
0,40 0,229 0,242 0,256 0,269 0,287 0,305 0,323 0,330
0,41 0,254 0,267 0,282 0,299 0,314 0.330 0.349 0,364
0,42 0,280 0,293 0,311 0,325 0,343 0,361 0,379 0,386
0,43 0,310 0,324 0,342 0,356 0,373 0,392 0,410 0,417
0,44 0,340 0,354 0,368 0,385 0,401 0.417 0,445 0,449
0,45 0,366 0,351 0,398 0,412 0,429 0,449 0,471 0.478
0,46 0,396 0,415 0,429 0,446 0,465 0,483 0,501 0,508
0,47 0,427 0,445 0,464 0,482 0,500 0,518 0,537 0,544
0,48 0,468 0,481 0,499 0,513 0,531 0,551 0,572 0.579
0,49 0,503 0,516 0,535 0,566 0,571 0,590 0,608 0.615
0,50 0,539 0,557 0,571 0.589 0,604 0,622 0,640 0,651
0,51 0,574 0,593 0.607 0,628 0,648 0.666 0,684 0,691
0,52 0,615 0.633 0,644 0,665 0,683 0,701 0,720 0,727
0,53 0,656 0,674 0,688 0,705 0,724 0,742 0,760 0,768
0,54 0,696 0,715 0,729 0,746 0,783 0,801 0,808
0,55 0,737 0,755 0,770 0,790 0,807 0,807 0,844 0,851
0,56 0,788 0,801 0,815 0,833 0.851 0,867 0,884 0.894
0,57 0,834 0,852 0,867 0,882 0,898 0,915 0,940
0,58 0,879 0,898 0,912 0,929 0,911 0,959 0,972 0,977
0,59 0,930 0,943 0,957 0,971 0,985 1,001 1,018 1,023
0,60 0,981 0,994 1,008 1,022 1,033 1,014 1,056 1,060

Таблица 7. Скорость движения воздуха больше 1 метра в секунду.

Наши рекомендации