Деление понятий. Классификация. Деление — это логическая операция, посредством которой объем делимого понятия (множество) распределяется на ряд подмножеств с помощью избранного основания
Деление — это логическая операция, посредством которой объем делимого понятия (множество) распределяется на ряд подмножеств с помощью избранного основания деления. Например, слоги делятся на ударные и безударные; органы чувств делят на органы зрения, слуха, обоняния, осязания и вкуса. Если с помощью определения понятия раскрывается его содержание, то с помощью деления понятия раскрывается его объем.
Признак, по которому производится деление объема понятия, называется основанием деления. Подмножества, на которые разделен объем понятия, называются членами деления. Делимое понятие — это родовое, а его члены деления — это виды данного рода, соподчиненные между собой, т. е. не пересекающиеся по своему объему (не имеющие общих членов). Приведем пример деления понятий: «В зависимости от источника энергии электростанции делят на ГЭС, гелиоэлектростанции, геотермальные и ветровые ТЭС (к разновидностям ТЭС относят АЭС)»12.
Объем понятия можно делить по различным основаниям деления в зависимости от цели деления, от практических задач. Но при каждом делении на некотором его уровне должно браться лишь одно основание. Так, например, мышцы в зависимости от места их расположения делят на мышцы головы, шеи, туловища, мышцы верхних конечностей и мышцы нижних конечностей. Мышцы делят по их форме и функции. В зависимости от формы мышцы делят на широкие, длинные, короткие, круговые. По функции различают мышцы — сгибатели, разгибатели, приводящие и отводящие мышцы, а также мышцы, вращающие внутрь и наружу.
Правила деления понятий
Чтобы деление было правильным, необходимо соблюдать следующие правила.
1. Соразмерность деления: объем делимого понятия должен быть равен сумме объемов членов деления. Например, высшие растения делятся на травы, кустарники и деревья. Электрический ток делится на постоянный и переменный.
Нарушение этого правила ведет к ошибкам двух видов:
а) неполное деление, когда перечисляются не все виды данного родового понятия. Ошибочными будут такие деления: «Энергия делится на механическую и химическую» (здесь нет, например, указания на электрическую энергию, атомную энергию). «Арифметические действия делятся на сложенне, вычитание, умножение, деление, возведение в степень» (не указано «извлечение корня»);
б) деление с лишними членами. Пример этого ошибочного деления: «Химические элементы делятся на металлы, неметаллы и сплавы». Здесь .лишний член («сплавы»), а сумма объемов понятий «металл» и «неметалл» исчерпывает объем понятия «химический элемент».
2. Деление должно проводиться только по одному основанию. Это означает, что нельзя брать два или большее число признаков, по которым бы производилось деление.
Если будет нарушено это правило, то произойдет перекрещивание объемов понятий, которые появились в результате деления. Правильные «деления: «Волны делятся на продольные и поперечные». «В промышленности получение стали осуществляется тремя способами: кислородно-конверторным, мартеновским и в электропечах». Неправильным является такое деление: «Транспорт делится на наземный, водный, воздушный, транспорт общего пользования, транспорт личного пользования», — ибо допущена ошибка «подмена основания», т. е. деление произведено не по одному основанию. Сначала в качестве основания деления берется вид среды, в которой осуществляются перевозки, а затем за основание деления берется назначение транспорта.
3. Члены деления должны исключать друг друга, т. е. не иметь общих элементов, быть соподчиненными понятиями, объемы которых не пересекаются.
Это правило тесно связано с предыдущим, так как если деление осуществляется не по одному основанию, то члены деления не будут исключать друг друга. Примеры ошибочных делений: «Дроби бывают десятичными, правильными, неправильными, периодическими, непериодическими»; «Войны бывают справедливыми, несправедливыми, освободительными, захватническими, мировыми»; «Треугольники бывают прямоугольными, тупоугольными, остроугольными, равнобедренными, подобными». В этих примерах члены деления не исключают друг друга. Это следствие допущенной ошибки смешения различных оснований деления.
4. Деление должно быть непрерывным, т. е. нельзя делать скачки в делении. Будет допущена ошибка, если мы скажем: «Сказуемые делятся на простые, на составные глагольные и составные именные». Правильным будет сначала разделить сказуемые на простые и составные, а затем уже составные сказуемые разделить на составные глагольные и составные именные.
Будет допущена ошибка, если мы разделим удобрения на органические, азотные, фосфорные и калийные. Правильным будет сначала разделить удобрения на органические и минеральные, а затем уже минеральные удобрения разделить на азотные, фосфорные и калийные.
Операции с понятиями
Обобщение и ограничение понятия являются двумя взаимообратными логическими операциями, позволяющими на основе одного понятия построить (найти) другое - новое понятие.
Обобщение- операция, посредством которой совершается переход от понятия с меньшим объемом к понятию с большим объемом. В основе обобщения понятия лежит поиск родового понятия по отношению к исходному путем отбрасывания видового признака исходного понятия.
Допустим, мы в качестве исходного имеем понятие "студент". От прочих учащихся студенты отличаются тем, что они учатся в высших или средних специальных учебных заведениях. Отбросив этот видовой отличительный признак, мы получим понятие "учащийся" - родовое для исходного понятия. В свою очередь понятие "учащийся" может быть обобщено в родовое уже для него понятие "человек". Для этого надо отбросить видовые признаки учащегося, отличающие его от других людей. Понятие же "человек" можно обобщить по тому же алгоритму в понятие" млекопитающее", а последнее понятие - в понятие "животное" и т.д.
Ограничение понятия - логическая операция, обратная обобщению. Посредством ограничения совершается переход от понятия с большим объемом к понятию с меньшим объемом (от родового к видовому).
Ограничение понятия производится путем прибавления к содержанию понятия видообразующего признака. Например, нам надо ограничить понятие "здание". Прибавив к содержанию этого понятия признак "кирпичный", мы получим видовое в отношении к исходному понятие «кирпичное здание».
Обратим внимание на то, что в логических операциях обобщения и ограничения четко прослеживается связь между содержанием понятия и его объемом. Обобщая понятие, мы последовательно обедняем его содержание, и это неуклонно ведет к расширению его объема. Ограничивая понятие, мы видим обратную картину - обогащение содержания понятия ведет к уменьшению его объема. Все это позволяет сформулировать важный логический закон обратного отношения между объемом и содержанием понятий: если понятия находятся в отношении подчинения друг к другу, то понятие с большим объемом будет беднее по содержанию, и наоборот, понятие с более богатым содержанием будет уже по объему.
Контрольные вопросы
1. Что такое понятие?
2. Каковы отношения между понятиями?
3. Какие типы суждений вы знаете? Каковы отношения между ними?
4. Охарактеризуйте отношения между понятиями на примере
логического квадрата.
Контрольный тест
1. Понятие – это
1. слово или словосочетание;
Форма мышления;
3. истинный тезис;
4. некий предмет.
2. Любое понятие имеет:
1. величину;
2. объём;
3. размер;
4. фигуру.
3. Содержание понятия – это:
1. совокупность всех объектов, которые оно охватывает;
2. наиболее важные признаки того объекта, который оно выражает;
3. то суждение, в котором оно может употребляться;
4. объект, который оно обозначает.
4. Объём понятия – это совокупность: