Морфология и метаболизм дрожжей
Микроморфология дрожжей
Микроморфология дрожжей включает признаки, характеризующие отдельные клетки , а также способы вегетативного и бесполого размножения и образуемые при этом структуры. Можно обнаружить у дрожжей следующие признаки:
Типы вегетативного размножения.
Морфогенез дрожжевой клетки тесно связан со способом вегетативного размножения. Различают два принципиально различных способа образования вегетативных клеток у дрожжей артрический и бластический . При артрическом способе мицелий дрожжеподобных грибов одновременно распадается на отдельные одноклеточные элементы артроспоры . Они образуются за счет расчленения гифы по поперечным септам после разрушения первичной стенки гифы в местах сочленения. Такой способ вегетативного размножения характерен для дрожжеподобных грибов Endomyces, Galactomyces, Arxula, Trichosporon, причем у двух последних родов образование артроспор сопряжено с их последующим почкованием. Бластический тип вегетативного размножения - это образование почек, что наиболее характерно для дрожжей. Почка представляет собой вырост на материнской клетке, который по мере увеличения в размере отшнуровывается от нее.
По ультраструктурному механизму образования почек различают голобластическое и энтеробластическое почкование . Первый тип характерен для аскомицетовых, второй для базидиомицетовых дрожжей, то есть признак этот имеет высокую таксономическую ценность. При голобластическом почковании в образовании почки участвует вся клеточная стенка материнс- кой клетки, и почка при этом из нее. При энтеробластическом почковании почка вырастает из материнской, разрывая ее. Клеточная стенка почки синтезируется заново, и весь процесс напоминает прорастание споры, то есть он имеет сходство с репродуктивной фазой мицелиальных грибов, например с образованием конидий по типу фиалид. В зависимости от места образования почек и способа их отделения от материнской клетки различают несколько типов почкования. Этот признак хорошо выявляется при обычной световой микроскопии и служит для дифференциации дрожжей на различных таксономических уровнях. У большинства аскомицетовых дрожжей с многосторонним почкованием почки возникают на любом месте клеточной поверхности последовательно одна за другой, однако у некоторых видов закладывается одновременно по несколько почек. В этом случае говорят о множественном почковании . Каждая новая почка после отделения оставляет на материнской клетке новый шрам почкования, по числу которых можно судить о возрасте клетки. Иногда на старых клетках таких шрамов почкования насчитывают более двух десятков. При полярном почковании закладка почек происходит строго только по полюсам клетки и каждая последующая почка возникает точно на месте предыдущей. При этом шрамы почкования нарастают один на другой и придают клетке характерную форму : грушевидную или лимоновидную, апикулятную . Так как в этих случаях пере- шеек между материнской клеткой и почкой бывает очень широкий, с ясно видимой в световом микроскопе септой, то такой тип почкования называют почкующимся делением . Почкование на широком основании часто встречается и у базидиомицетовых дрожжей, но места образования новых почек у них обычно строго не фиксированы. Для родов Sterigmatomyces, Kurtzmanomyces, Fellomyces характерно формирование почек-конидий на длинных выростах, или стеригмах. Таким образом, дрожжевые клетки значительно различаются по форме у разных родов и видов и этот признак тесно связан со способом вегетативного размножения У видов, размножающихся многосторонним почкованием, клетки имеют сферическую, округлую, овальную или яйцевидную форму.
Псевдомицелий. У многих видов дрожжей в определенных условиях роста материнские и дочерние клетки после почкования не разъединяются, а продолжают почковаться. В результате возникают структуры, имитирующие мицелий. Такой мицелий называют ложным, или псевдомицелием. В отличие от истинного мицелия, в нитях псевдомицелия между клетками обычно хорошо заметны перетяжки, а апикальные клетки всегда короче пред- шествующих. Псевдомицелий, состоящий только из клеток одного типа, сходных по форме и размерам, называют примитивным. Сложный псевдомицелий состоит из клеток более чем одного типа, обычно в нем резко различаются длинные клетки, составляющие псевдогифы, и расположенные на них одиночные или собранные гроздьями круглые, овальные или клиновидные почки, которые в этом случае называются бластоспорами.
Диморфизм и плеоморфизм , для дрожжей, как и для других грибов, известны явления диморфизма и плеоморфизма. Мицелиально дрожжевой диморфизм проявляется в том, что один вид может расти в двух формах одноклеточной и мицелиальной. Это явление хорошо известно в микологии и связано с двумя типами роста сферическим или апикальным. Есть дрожжи, которые образуют только одноклеточные популяции, хотя могут расти в виде конгломератов из отдельных клеток; они могут формировать структуры, внешне имитирующие мицелий.
Баллистоспоры , это экзогенные споры , которые формируются на заостренных кончиках особых выростов стеригм, и при созревании с силой отстреливаются за счет капельно-экскреторного механизма . Таким же образом у базидиомицетов отстреливаются созревшие базидиоспоры за счет резкого увеличения тургорного давления в стеригме и выталкивания капельки жидкости, которая и несет на себе спору.
Хламидоспоры крупные сферические или овальные клетки, которые образуются как из одиночных дрожжевых вегетативных клеток, так и на мицелии: интеркалярно, латерально или терминально, по одной или цепочками.
Спиртовое брожение
Наиболее известное свойство многих дрожжей - способность к спиртовому брожению. Многие виды дрожжей могут переключаться с бродильного метаболизма на дыхательный и обратно в зависимости от условий: при наличии кислорода брожение ингибируется и дрожжи начинают дышать, в отсутствие кислорода включается механизм спиртового брожения. Так как кислородное дыхание , энергетически более выгодный процесс, чем брожение, то выход биомассы дрожжей в расчете на единицу используемого субстрата выше при выращивании их в аэробных условиях, чем в анаэробных. Это явление называется эффектом Пастера. Спиртовое брожение может идти не только в анаэробных условиях. Если выращивать дрожжи в присутствии кислорода, но при высоком содержании глюкозы в среде, то в этом случае дрожжи также сбраживают глюкозу. Таким образом, глюкоза подавляет процессы анаэробного дыхания. Это явление получило название эффекта Кребтри, или катаболитной репрессии. Многие дрожжи вообще не способны бродить. По соотношению между этими двумя процессами в метаболизме можно выделить следующие группы дрожжей:
1. Дрожжи, существующие только за счет брожения и не способные расти в аэробных условиях. К ним относится, например, вид Arxiozyma telluris, обитающий в кишечном тракте грызунов.
2. Активные бродильщики: интенсивно сбраживают различные субстраты, но в аэробных условиях переключаются на дыхательный обмен. Представители Saccharomyces cerevisiae, Schizosaccharomyces pombe.
3. Слабые бродильщики в основном существуют за счет аэробного дыхания, но в анаэробных условиях могут бродить, однако значительно менее интенсивно, чем виды из предыдущей группы. Это аскомицетовые дрожжи из родов Pichia, Debaryomyces, а также все способные к брожению базидиомицетовые дрожжи.
4. Дрожжи, существующие только за счет дыхания и не способные расти в анаэробных условиях. К этой группе относятся аскомицетовые дрожжи из рода Lipomyces и многие несовершенные дрожжи базидиомицетового аффинитета Cryptococcus, Rhodotorula, Sporobolomyces.
При росте в анаэробных условиях дрожжи превращают глюкозу в пировиноградную кислоту по гликолитическому пути, получая 2 моля АТФ на 1 моль глюкозы. Процесс гликолиза включает реакцию окисления фосфоглицеринового альдегида, в которой образуется восстановленный пиридиннуклеотид НАД·Н. В аэробных условиях последний окисляется через систему переноса электронов кислородом. В отсутствие же кислорода для сохранения окислительно восстановительного равновесия необходимо окислить НАД·Н каким-либо другим путем. В дрожжевой клетке это окисление включает декарбоксилирование пирувата и превращение образовавшегося при этом ацетальдегида в этанол с одновременным окислением НАД·Н до НАД+. Образовавшийся НАД+ может принимать участие в окислении следующей молекулы фосфоглицеринового альдегида . Ход брожения может сильно меняться в зависимости от условий. Если, например, в культуру бродящих дрожжей добавить бисульфит, то образующийся из пирувата ацетальдегид связывается в бисульфитный аддукт, тем самым блокируя образование этанола. Дрожжевые клетки в ответ на это используют для окисления накапливающегося НАД·Н половину образующегося триозофосфата. Последний, восстанавливаясь, превращается в глицерин. Хотя при этом суммарный выход АТФ становится равным нулю, и такое брожение не может обеспечить рост клеток, его можно использовать для промышленного получения глицерина. В типичном же случае основные продукты спиртового брожения этанол и углекислота, однако, в микроколичествах образуется также множество побочных соединений. Субстраты брожения. Все бродящие дрожжи сбраживают глюкозу и фруктозу, поскольку именно с этих сахаров начинается гликолитическое расщепление. Кроме глюкозы и фруктозы могут сбраживаться другие соединения, которые легко превращаются в интермедиаты гликолитического пути. В основном к ним относятся гексозы и олигосахариды, включающие остатки гексоз.
Дыхание
При росте в аэробных условиях при низком содержании глюкозы в среде дрожжи получают АТФ за счет процессов дыхания, как это делает большинство аэробных организмов. Полное окисление углеродного субстрата до углекислого газа и воды может происходить у дрожжей с помощью трех различных механизмов: в цикле трикарбоновых кислот, в глиоксилатном цикле и в пентозофосфатном цикле . При функционировании каждого из этих циклов в клетке происходит образование восстановленных пиридиннуклеотидов. Они могут быть использованы либо для процессов восстановления в ходе биосинтеза, либо для получения АТФ путем окислительного фосфорилирования. В последнем случае НАД·Н становится донором электронов для электронно-транспортной цепи, в которую у дрожжей входят такие белки-переносчики электронов, как флавопротеиды, убихиноны и цитохромы, локализованные на внутренней мембране митохондрий. Спектр углеродных соединений, усваиваемых дрожжами за счет аэробного дыхания, значительно шире, чем в случае брожения. Рассмотрим особенности аэробного метаболизма дрожжами некоторых углеродных соединений.
Углеводы : За исключением Arxiozyma telluris, обитающего в кишечнике грызунов и неспособного к дыхательному метаболизму, все остальные виды дрожжей растут аэробно на глюкозе. Многие другие гексозы также могут использоваться дрожжами как субстраты дыхания. Если в анаэробных условиях лишь единичные виды дрожжей могут сбраживать пятиатомные сахара, то в присутствии кислорода пентозы и метилпентозы могут служить субстратами для очень многих дрожжей. При этом происходит превраще- ние пентоз в соответствующие интермедиаты пентозофосфатного пути. Многие дрожжи способны также аэробно ассимилировать различные производные сахаров, например сахароспирты или гликозиды.
Жирные кислоты и налканы: Ряд видов дрожжей отличается способностью к аэробному росту на длинноцепочечных жирных кислотах и алканах. К таким дрожжам относятся некоторые виды рода Candida аскомицетового аффинитета. Ассимиляция н-алканов может идти только аэробным путем, так как первая стадия их катаболизма , это окисление концевого атома углеводородной цепочки молекулярным кислородом. Образующийся спирт окисляется до соответствующей жирной кислоты, которая затем подвергается процессам β-окисления, отщепляя последовательно двууглеродные остатки ацетил-КоА. Последний окисляется в цикле трикарбоновых кислот или глиоксилатном цикле. Дрожжи, растущие на средах с н-алканами, имеют специфические цитологические особенности. На ультратонких срезах таких клеток обычно видны органеллы, окруженные гомогенными липопротеидными мембранами пероксисомы. Функция пероксисом состоит в компартментализации процессов β-окисления от дальнейших превращений ацетил-КоА.
Одноуглеродные соединения: Более 20 видов дрожжей способны аэробно расти на метаноле в качестве единственного источника углерода и энергии. Наиболее активно ассимилируют метанол такие виды, как Candida boidinii, Candida methylica, Pichia polymorpha, Pichia pastoris. Все эти виды - факультативные метилотрофы, они хорошо растут также и на углеводах. Катаболизм метанола дрожжами начинается с его окисления кислородом с образованием формальдегида. Эта реакция катализируется ферментом метанолоксидазой, содержащим в качестве кофермента ФАД. При действии флавиновых оксигеназ образуется Н2О2, поэтому метилотрофные дрожжи всегда богаты каталазой, разлагающей токсичную Н2О2 до Н2О и О2. Формальдегид затем окисляется последовательно до муравьиной кислоты и СО2. При этом окисляемый субстрат находится в связанном виде с молекулой глутатиона. В ходе окисления на 1 моль метанола образуется 1 моль НАД·Н, который может участвовать в процессах биосинтеза или отдавать электроны в цепь переноса электронов для генерации АТФ.
Ароматические соединения: Некоторые дрожжи, в частности Trichosporon pullulans, Debaryomyces hansenii, способны аэробно ассимилировать ароматические соединения, такие как фенол, резорцин, салициловая кислота и т.п. Большинство дрожжей неспособно ассимилировать в качестве источника углерода гетероциклические соединения, включая пуриновые и пиримидиновые производные. Однако недавно описан новый вид Arxula adeninivorans, активно ассимилирующий различные пуриновые соединения в качестве источника углерода и азота. Катаболизм ароматических соединений у дрожжей идет по β-кето- адипиновому пути и начинается с введения ОН-групп и раскрытия ароматического кольца с помощью оксигеназ.