III. Строение атома. Развитие периодического закона
Атом - наименьшая частица химического элемента - состоит из положительно заряженного ядра и отрицательно заряженных электронов. В ядро атомов всех элементов (за исключением 1Н) входят протоны и нейтроны.
Протон (р) - элементарная частица с единичным положительным зарядом и массой покоя 1,00728. Число протонов в ядре определяет заряд ядра и принадлежность атома к данному химическому элементу.
Нейтрон (n°)-элементарная частица, не обладающая зарядом, с массой покоя 1,00867. Сумма протонов и нейтронов называетсямассовым числом атома (ядра).
Атомы, обладающие одинаковым зарядом ядра, но разным числом нейтронов, называютсяизотопами данного химического элемента.
Электрон (е) - элементарная частица с единичным отрицательным зарядом.
При всех химических процессах ядра атомов элементов не изменяются. Энергия химических превращений связана только с энергией электронов.
Околоядерное пространство, где с наибольшей вероятностью может находиться электрон, называетсяатомной орбиталью (АО). Она характеризуется тремя координатами -квантовыми числами, определяющими размер (n), форму (1) и ориентацию (mе) АО в пространстве.
Главное квантовое число (n) определяет энергетический уровень электрона в атоме. Для электронов в невозбужденных атомах п принимает значения от 1 до 7 (соответственно номеру периода в ПСЭ). Совокупность электронов с одинаковым n -электронный слой:
Главное квантовое число n 1 2 3 4 5 6 7
Электронный слой К L М N О Р Q
Орбитальное квантовое число (1) указывает на различие энергий связи электронов в пределах одного энергетического уровня, определяет форму электронного облака и принимает целочисленные значения от 0 до (n -1). Для n =1 1=0; для n =2 1=0,1; для n =3 1=0,1,2; для n =4 1=0,1,2,3. Электроны данного энергетического уровня группируются в подуровни, число которых равно его n. Больше четырех подуровней не заполняется, т.к. значения 1=0,1,2,3 описывают электроны в атомах всех известных элементов.
Орбитали с 1=0,1,2,3 называют s-, p-, d-, f-орбиталями, а электроны, занимающие эти орбитали, - s-, p-, d-, f- электронами.
Магнитное квантовое число - mе характеризует магнитный момент и пространственное расположение электронного облака. Число возможных значений mе при заданном 1 равно 2∙(1+1), при этом mе изменяется от -1 до +1. Так при 1=2 mе имеет пять значений: -2, -1, 0, 1, 2 .
Спиновое квантовое число - ms характеризует движение электрона вокруг своей оси. ms имеет всего два значения: 1/2 и -1/2.
Распределение электронов в атомах по атомным орбиталям определяется принципом Паули, принципом наименьшей энергии и правилом Хунда.
Принцип Паули. В атоме не может быть двух электронов, имеющих одинаковый набор всех четырех квантовых чисел. Максимальное число электронов на уровне N=2n2. Так как каждая атомная орбиталь описывается лишь тремя квантовыми числами (n, 1, mе), то в ней может находиться не более двух электронов с противоположными спинами (1/2, -1/2).
Принцип наименьшей энергии. Последовательность размещения электронов по атомным орбиталям в невозбужденном атоме должна отвечать наибольшей связи их с ядром, т.е. электрон должен обладать наименьшей энергией. Поэтому сначала заполняются те подуровни, для которых сумма значенийn +1 является меньшей; если суммы значений n +1 равны, то сначала идет заполнение подуровня с меньшим значением n. Шкала энергий:
1s2 < 2s2 < 2p6 < 3s2 < Зр6 < 4s2 < 3d10 < 4pб < 5s2 < 4d10< 5р6 < 6s2 < 5d1 < 4f14 ≤ 5d2-10 < 6р6 < 7s2 < 6d1 ≤ 5f14 < 6d2-10 < 7p6, где s,p,d,f - энергетические подуровни, цифра впереди букв означает номер энергетического уровня, на котором находятся электроны; индекс наверху справа показывает максимальное число электронов на подуровне.
Из шкалы энергий видно, что после 3р-подуровня (n+1=3+l=4) заполняется 4s-подуровень (n+1=4+0=4), затем 3d-подуровень (n+1=3+2=5); 4р-подуровень (n+1=4+1=5) и 5s-подуровень (n+1=5+0=5).
Правило Хунда. Орбитали в пределах данного подуровня заполняются так, чтобы суммарное спиновое число электронов на подуровне было максимально. Суммарный спин спаренных электронов равен нулю (-1/2+1/2=0).
Энергетическое состояние электрона схематически можно представить в виде квантовых ячеек. Для s-электронов (1=0) - одна ячейка [ ], где может быть один [↑] или два электрона [↑↓]; для р-электронов отводится три ячейки [ ][ ][ ], где может быть от 1 до 6 электронов; для d-электронов (1=2) отводится пять ячеек [ ] [ ][ ][ ][ ], где может быть от 1 до 10 электронов; для f-электронов (1=3) отводится семь ячеек, где может быть от 1 до 14 электронов.
Строение электронных оболочек атомов тесно связано с ПСЭ Д.И. Менделеева. Если провести вертикальную черту в шкале энергий перед каждым значением главного квантового числаn, то получим максимальную емкость энергетического уровня, а также число элементов в периоде:
n =1 (I период) - емкость 2,
n =2 (II период) - 8,
n =3 (III период) - 8,
n =4 (IV период) - 18,
n =5 (V период) - 18,
n =6 (VI период)-32,
n =7 (VII период)-32.
В зависимости от того, на какой энергетический подуровень в атоме поступает последний электрон, химические элементы делятся на s-, p-,d-, f-элементы. Их положение в ПСЭ следующее:
s-элементы I, II группы, главная подгруппа -(ns1, ns2), а также (Не);
р-элементы III - VIII группы, главные подгруппы (ns2np1-6);
d-элементы I - VIII группы, побочные подгруппы [ns2(n-1)d1-10]:
f-элементы III группа, VI- VII период, побочная подгруппа [ns2(n-1)d1(n-2)1-14].
Валентные электроны у s- и p-элементов находятся на внешнем энергетическом уровне, у d-элементов - на s-подуровне внешнего энергетического уровня (ns2) и предвнешнего (n-1)d1-10 незавершенного подуровня.
Свойства элементов тесно связаны со строением их атомов. "Периодическая повторяемость свойств элементов обусловлена периодическим повторением электронных оболочек атомов" - это современная формулировкапериодического закона. Составленная Менделеевым периодическая система элементов является графическим выражением периодического закона. Атомы элементов в одной подгруппе данной группы имеют одинаковую электронную конфигурацию. Например, для главных подгрупп ПСЭ:
Номер периода | I | II | III | IV | V | VI | VII | VIII |
Электронная конфигурация внешнего слоя (валентные электроны) | ns1 | ns2 | ns2np1 | ns2np2 | ns2np3 | ns2np4 | ns2np5 | ns2np6 |
s-элементы | р-элементы |
Химические свойства элемента зависят от способности его атома терять (А°-ē®А+) или обретать (А°+ē®А-) электроны, превращаясь в положительно или отрицательно заряженные ионы. Это оценивается количественно через энергию ионизации атома и энергию сродства к электрону.
Энергия ионизации J - энергия, необходимая для отрыва электрона от нейтрального атома в его нормальном состоянии. Энергия ионизации является мерой металлических свойств элемента (в первом приближении - также восстановительных свойств). Чем меньше значенияJ, тем легче отрывается электрон внешнего уровня, тем больше металлических свойств.
Энергия сродства к электрону U - энергия процесса присоединения электрона к нейтральному атому в нормальном состоянии. Величина энергии сродства к электрону является мерой проявления элементом неметаллических и косвенно окислительных свойств.
Электроотрицательность (ЭО) - есть полусумма энергий сродства к электрону и ионизации, т. е. ЭО = 0.5∙(J+U).ЭО позволяет дать наиболее полную характеристику способности элемента проявлять металлические или неметаллические свойства.
Относительная электроотрицательность ОЭО - получается отношениемЭО элемента кЭО атома фтора, для которого значениеОЭО принято равным 4. ВеличинаОЭО позволяет оценить способность атома элемента к оттягиванию на себя электронной плотности атомов других элементов.
В ПСЭ Д.И. Менделеева в пределах главных подгрупп (s-, р-элементы) сверху вниз значенияОЭО уменьшаются, следовательно, в главных подгруппах сверху вниз увеличиваются металлические и восстановительные свойства элементов, основные свойства их гидроксидов.
В периодах ПСЭслева направо значенияОЭО увеличиваются, следовательно, здесь постепенно ослабляются металлические и нарастают окислительные свойства. Самый активный неметалл F, он же наиболее сильный окислитель. Самые активные металлы Fr, Cs, Rb являются наиболее сильными восстановителями, а их гидроксиды - самыми сильными основаниями.
Номер группы ПСЭ, в которой стоит элемент, показывает высшую степень окисления его атома в химических соединениях, его высшую валентность. Исключение составляют кислород, фтор (р-семейство); медь, серебро, золото и некоторые другие элементы d-семейства могут проявлять в соединениях валентность большую, чем номер группы.
Номер периода | ||||||||
Степень окисления 1————————————— | I | II | III | IV | V | VI | VII | VIII |
Высшая | +1 | +2 | +3 | +4 | +5 | +6 | +7 | |
Низшая | - | - | - | -4 | -3 | -2 | -1 |
Форма и свойства соединений данного элемента зависят от степени окисления его атомов. Если элемент проявляет переменную степень окисления и образует несколько оксидов и гидроксидов, то с ее увеличением их свойства меняются от основных через амфотерные к кислотным. Например, Мn образует пять оксидов: МnО, Мn2О3, MnO2, МnО3, Mn2O7? Первые два обладают основными свойствами (Мn(OH)2, Мn(OH)3, МnО2 амфотерен (MnO(OH)2, Н2МnО3), а последние два МnО3 и Мn2О7 - кислотообразующие, являются ангидридами марганцовистой (Н2МnО4) и марганцевой кислот (HMnO4), соответственно (МnО3 и Н2МnО4 в свободном состоянии не выделены, а их существование можно предположить по образованию солей марганцовистой кислоты манганатов).