Переваривание и всасывание углеводов
Глава 4. Углеводный обмен
Раздел 1. Значение изучаемой темы
Знание обмена углеводов необходимо будущему врачу любой специальности. Углеводы являются одним из главных источников энергии для организма, а также важным компонентом многих внутриклеточных и внеклеточных структур; из углеводов образуются вещества других классов (жиры и заменимые аминокислоты). Нарушения в обмене углеводов приводят к таким заболеваниям как гликогенозы, дисахаридозы, галактоземия, фруктозурия. Знание гормональной регуляции обмена углеводов в целом и уровня глюкозы в крови, в частности, необходимо для правильного прочтения, оценки и использования данных биохимических анализов при постановке диагноза и лечения таких заболеваний как сахарный диабет, феохромацитома, стероидный диабет и других.
Раздел 2. Сведения об углеводном обмене
Функции углеводов
Углеводы - это оксопроизводные многоатомных спиртов и продукты их конденсации. В организме человека выполняют важные функции:
- обеспечивают значительную часть энергетических потребностей (около 57% суточного калоригенеза);
- являются составными частями более сложных соединений;
- из них могут синтезироваться соединения других классов, в частности, липиды и заменимые аминокислоты;
- выполняют структурообразовательную функцию, то есть входят в состав клеточных и межклеточных структур;
- выполняют специфические функции.
Переваривание и всасывание углеводов
Попадающие с пищей углеводы подвергаются в организме перевариванию. В этом процессе участвуют следующие ферменты:
- a-амилаза слюны и a-амилаза поджелудочной железы. Эти ферменты расщепляют a-1,4-гликозидные связи в крахмале и гликогене, действуют в слабощелочной среде, активируются ионами хлора и стабилизируются ионами кальция;
- амило-1,6-гликозидаза вырабатывается в кишечнике, расщепляет 1,6-гликозидные связи к крахмале и гликогене;
- сахараза образуется в кишечнике и расщепляет сахарозу с образованием глюкозы и фруктозы;
- мальтаза образуется в кишечнике и расщепляет мальтозу на две молекулы глюкозы;
- лактаза образуется там же, расщепляет лактозу с образованием галактозы и глюкозы.
Таким образом, пищевые углеводы в ЖКТ расщепляются до моносахаридов - глюкозы, фруктозы и галактозы, которые всасываются путем активного транспорта или диффузно и попадают в кровь, а затем в печень.
Роль печени в обмене углеводов
Печень в обмене углеводов выполняет важные функции:
1. Унификация моносахаридов. Превращение галактозы и фруктозы в глюкозу или метаболиты ее обмена.
2. Гликогенная функция. При избытке глюкозы в крови в печени происходит синтез гликогена, при ее снижении в крови гликоген печени расщепляется до глюкозы и, таким образом, ее концентрация в крови восстанавливается до нормального уровня.
3. Синтез углеводов из метаболитов неуглеводного характера (глюконеогенез).
4. Синтез гликопротеинов крови.
5. Образование глюкуроновой кислоты, которая участвует в обезвреживании экзогенных и эндогенных токсинов (например, билирубина), а также в инактивации гормонов.
Образование активной формы глюкозы и значение этой реакции
Активация глюкозы происходит путем фосфорилирования под действием ферментов киназ.В печени работают две киназы: гексокиназа и глюкокиназа, в других органах, в том числе и в мышцах, - гексокиназа. Эти ферменты катализируют перенос Н3РО4 с АТФ на глюкозу с образованием глюкозо-6-фосфата. Различие между этими ферментами заключается в разном сродстве к глюкозе. У гексокиназы оно выше, чем у глюкокиназы. Поэтому мышца, а не печень, в первую очередь будет использовать глюкозу. Но когда глюкозы много в крови, тогда и печень будет получать глюкозы достаточно и синтезировать гликоген. Глюкозо-6-фосфат является центральным метаболитом углеводного обмена, имеет более высокую энергию по сравнению с глюкозой и легко вступает в дальнейшие превращения. Кроме того, в отличие от глюкозы, глюкозо-6-фосфат не может выходить из клеток.
Синтез и распад гликогена
Синтез гликогена происходит с участием нескольких ферментов: гексокиназы, фосфоглюкомутазы (переводит глюкозо-6-фосфат в глюкозо-1-фосфат), уридилтрансферазы (образует УДФ-глюкозу), гликогенсинтетазы (переносит глюкозу с УДФ-глюкозы на имеющуюся молекулу гликогена и присоединяет ее 1,4-гликозидной связью). Таким образом, чтобы удлинить молекулу гликогена на одно звено глюкозы необходимо затратить 2 макроэрга (АТФ и УТФ). Ветвление гликогена происходит под влиянием ветвящего фермента.
Распад гликогена происходит двумя путями:
1. Гидролитический путь идет в лизосомах клеток под действием g -амилазы при участии воды без образования промежуточных продуктов.
2. Фосфоролитический путь (фосфоролиз) идет в цитоплазме под действием фосфорной кислоты с образованием промежуточных продуктов, катализируется несколькими ферментами.
Оба способа расщепления гликогена приводят к образованию глюкозы. В мышцах фосфоролиз заканчивается на глюкозо-6-фосфате, так как в них нет глюкозо-6-фосфатазы. Таким образом, только печень является источником глюкозы для крови.
Ключевыми ферментами синтеза гликогена являются: гексокиназа и гликогенсинтетаза, распада гликогена - фосфорилаза и глюкозо-6-фосфатаза. Синтез гликогена усиливается инсулином, распад стимулируется катехоламинами, глюкагоном, глюкокортикостероидами, цАМФ и Са2+.
Гликолиз. Значение. Регуляция.
Гликолиз - это расщепление глюкозы до молочной кислоты в анаэробных условиях. Гликолиз, проходящий в аэробных условиях, называют аэробным.
Гликолиз состоит из двух стадий: подготовительной и главной.
В подготовительной стадии глюкоза расщепляется с образованием диоксиацентонфосфата (ДОАФ) и 3-фосфоглицеринового альдегида, при этом рас-ходуются 2 молекулы АТФ;
В главной стадии фосфотриозы превращаются в лактат (молочную кислоту), при этом образуются 4 молекулы АТФ. Синтез АТФ в гликолизе происходит путем субстратного фосфорилирования.
Таким образом, анаэробное окисление глюкозы приводит к образованию 2 молекул лактата и 2 молекул АТФ.
Ключевыми ферментами гликолиза являются: гексокиназа (начальный фермент), фосфофруктокиназа (лимитирующий фермент), пируваткиназа. АТФ и цитрат ингибируют фосфофруктокиназу, АДФ - активирует.
Преимущества гликолиза:
- быстрый процесс;
- анаэробный.
Недостатки гликолиза:
- малоэффективный процесс;
- продуктом гликолиза является лактат, накопление которого в
клетках и в крови вызывает метаболический ацидоз.
Глюконеогенез. Значение. Регуляция.
Гликогенолиз - это анаэробное окисление гликогена с образованием молочной кислоты. Окисление каждой отщепленной от гликогена молекулы глюкозы приводит к образованию 3 молекул АТФ. Ключевыми ферментами гликогенолиза являются: фосфорилаза, фосфофруктокиназа и пируваткиназа. Гликогенолиз усиливается катехоламинами, глюкагоном, цАМФ, Са2+.
Глюконеогенез - это синтез глюкозы из неуглеводных предшественников (лактата, пирувата, оксалоацетата, глицерина, аминокислот). По направлению реакций глюконеогенез (ГНГ) напоминает гликолиз наоборот. Однако ГНГ не является простым обращением гликолиза, так как в нем три фермента (гексокиназа, фосфофруктокиназа, пируваткиназа) катализируют необратимые реакции и поэтому в глюконеогенезе работать не могут. Они заменяются другими ферментами. Так, пируваткиназа заменена двумя ферментами пируваткарбоксилазой и фосфоенолпируваткарбоксикиназой (ФЕПКК); фосфофруктокиназа - фруктозо-1,6-дифосфатазой; гексокиназа - глюкозо-6-фосфатазой.
На образование 1 молекулы глюкозы расходуется 6 макроэргов (4 АТФ и 2 ГТФ). ГНГ локализован в цитоплазме гепатоцитов печени, в клетках коры почек и тонкого кишечника. Около 90% лактата, используемого в глюконеогенезе, поступает в печень, 10% - в почки и тонкий кишечник.
Значение глюконеогенеза
1. Является важным источником глюкозы в организме;
2. Удаляет большую часть лактата из клеток и тканей, работающих в анаэробных условиях, что предохраняет их от метаболического ацидоза. ГНГ особенно важен после интенсивной мышечной работы, когда накапливается лактат. 20-30% лактата может окисляться до СО2 и Н2О в самой мышце, 70-80% используется в ГНГ на образование глюкозы. Так как в мышце нет ГНГ, лактат из нее поступает в кровь, затем в печень, где превращается в глюкозу, которая кровью разносится всем органам и тканям, в том числе и мышцам. Таким образом, между печенью и мыщцей существует взаимосвязь, так называемый цикл Кори (глюкозо-лактатный цикл).
Регуляция глюконеогенеза
Ключевыми ферментами ГНГ являются: пируваткарбоксилаза, ФЕПКК, фруктозо-1,6-дифосфатаза, глюкозо-6-фосфатаза.
ГНГ усиливают: глюкагон, катехоламины, глюкокортикостероиды, ацетил-КоА, АТФ, цАМФ, Са2+. Тормозят глюконеогенез: инсулин, АДФ, этанол.
Источники глюкозо-6-фосфата: 1) во всех клетках образуется из глюкозы в ходе гексокиназной реакции; 2) в печени и мышцах образуется в ходе фосфоролиза из гликогена; 3) в печени, мышцах, тонком кишечнике - в результате ГНГ; 4) в печени - в результате унификации моносахаридов.
Пути использования глюкозо-6-фосфата: 1) синтез гликогена; 2) окисление до лактата в анаэробных условиях и до СО2 и Н2О в аэробных; 3) окисление в пентозофосфатном пути; 4)превращение в глюкозу (в печени, тонком кишечнике и коре почек).
Пентозофосфатный путь (ПФП)
Это прямое окисление глюкозо-6-фосфата. Состоит из двух частей: окислительной (необратимой) и неокислительной (обратимой). В ходе окислительной части ПФП при участии глюкозо-6-фосфатдегидрогеназы и 6-фосфоглюконатдегидрогеназы глюкозо-6-фосфат окисляется с образованием рибозо-5-фосфата, СО2, 2 молекул НАДФН. В неокислительной части ПФП из каждых трех молекул рибозо-5-фосфата образуются 1 молекула фосфоглицеринового альдегида и 2 молекулы фруктозо-6-фосфата. Дальнейшая судьба этих метаболитов известна: они могут либо окисляться в гликолизе и, в зависимости от условий, превращаться в лактат или пируват, либо использоваться в ГНГ на образование глюкозы. Если метаболиты окислительной части ПФП будут использоваться в ГНГ, тогда будет иметь место замыкание процесса, то есть ПФП примет вид цикла. Для протекания неокислительной части ПФП необходим витамин В1.
Значение ПФП: 1) энергетическое - образующиеся метаболиты окислительной части могут использоваться в гликолизе; 2) синтетическое - связано с использованием рибозо-5-фосфата и НАДФН. Рибозо-5-фосфат используется на синтез нуклеотидов, которые необходимы для образования коферментов, макроэргов, нуклеиновых кислот. НАДФН необходим для восстановительныхбиосинтезов (для работы редуктаз в синтезе холестерина и жирных кислот; в образовании дезоксирибозы из рибозы; для восстановления глутатиона, в образовании глутамата из 2-оксоглутарата); для работы гидроксилаз, участвующих в синтезе катехоламинов, серотонина, стероидных гормонов, желчных кислот, активной формы витамина Д, синтезе коллагена, обезвреживании ксенобиотиков; используется в трансгидрогеназной реакции.
ПФП локализованв цитозоле клеток.Он особенно активен в тканях эмбриона и плода, лимфоидной и миелоидной тканях, слизистой тонкого кишеч-ника, жировой ткани, эндокринных железах (надпочечники, половые), молочных железах (в период лактации), печени, эритроцитах, пульпе зуба, зачатках эмали зуба, при гипертрофии органов. ПФП мало активен в нервной, мышечной и соединительной тканях. ПФП способствует прозрачности хрусталика глаза; предупреждает гемолиз эритроцитов; входит в систему защиты от свободных радикалов и активных форм кислорода.
Регуляция ПФП:ключевыми ферментами являются - глюкозо-6-фосфатдегидрогеназа, 6-фосфоглюконатдегидрогеназа, транскетолаза.Активность ПФП увеличивается при повышении отношения НАДФ+/ НАДФН, а также под влиянием инсулина и йодтиронинов. ПФП ингибируют глюкокортикостероиды.
Глюкоза крови
Концентрация глюкозы в крови поддерживается на постоянном уровне 3,3 - 5,5 ммоль/л. Он обеспечивается двумя противоположно направленными процессами: 1. поставляющими глюкозу в кровь (переваривание углеводов в ЖКТ, ГНГ, распад гликогена печени) и 2. использующими глюкозу в тканях (гликолиз, синтез гликогена, ПФП, синтез жира). При очень высокой концентрации глюкозы в крови (> 9 – 10 ммоль/л), она может быть снижена за счет выведения ее с мочой. Такое явление называют глюкозурией. В норме концентрация глюкозы в моче составляет 0,2 - 1,2 ммоль/л.