Нитрование алканов по методу Коновалова

Органическая химия

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Часть II

Составители: И.К. Анохина,

М.Ю. Крысин,

Л.Ф. Пономарева

2-е издание, стереотипное

Воронеж 2006

Утверждено Научно – методическим советом химического факультета ВГУ, протокол № 4 от 24 января 2003 г.



Методические указания подготовлены на кафедре органической химии химического факультета Воронежского государственного университета.

Рекомендуется для студентов 3 и 4 курсов дневного отделения химического факультета.

Для специальности: 020101 (011000) - Химия

НИТРОВАНИЕ

Нитрование – процесс введения в молекулу органического соединения нитрогруппы с образованием связи между углеродом и азотом; продукты реакции называются нитросоединениями R-NO2.

Введение нитрогруппы в молекулу производится с помощью различных нитрующих агентов, и нитрование может осуществляться как прямым, так и непрямым путем. К процессам прямого нитрования относятся реакции замены водорода на нитрогруппу, а также присоединение нитрующих агентов по кратной связи. К непрямому нитрованию относят реакции, замещения на нитрогруппу какого-либо другого атома или атомной группы (например, галоида, сульфогруппы). К методам непрямого нитрования можно отнести также реакции конденсации, приводящие к образованию нитросоединений.

Наиболее детально изучены методы синтеза нитросоединений ароматического ряда; эти нитросоединения широко используются в промышленности для производства взрывчатых веществ, полупродуктов в синтезе красителей, фармацевтических препаратов, а также других практически ценных соединений.

Нитрующие агенты

В качестве нитрующих агентов чаще всего применяются следующие соединения или их смеси:

1. HNO3 различных концентраций: концентрированная HNO3 применяется для парофазного нитрования, разбавленная главным образом для нитрования парафиновых и циклопарафиновых углеводородов по методу Коновалова, а также для нитрования фенолов.

2. Нитрующая смесь, состоящая из концентрированной азотной и концентрированной серной кислот (HNO3 + H2SO4). Оптимальные соотношения определяются характером нитруемого соединения и числом нитрогрупп, которое следует ввести в это соединение. Применяется для нитрования большинства ароматических соединений.

3. Нитраты металлов и серная кислота (конц.) используются для введения нитрогруппы в гетероциклические соединения, замещенные бензола.

4. Оксиды азота: NO2-диоксид азота, его димер N2O4 применяются для получения нитросоединений из олефинов, широко применяются при парофазном нитровании парафинов.

5. Смеси HNO3 c CH3COOH или (СН3СО)2О – мягкие нитрующие агенты для реакционноспособных ароматических или гетероциклических соединений. Применяют, когда действие нитрующей смеси может вызвать разрушение нитруемого соединения или приводит к образованию полинитросоединений.

 
  Нитрование алканов по методу Коновалова - student2.ru

6. Ацетилнитрат и бензоилнитрат

Обладают очень энергичным нитрующим действием, обеспечивают возможность проведения реакции в неводных средах (ССl4, уксусный ангидрид), предотвращают окисление.

 
  Нитрование алканов по методу Коновалова - student2.ru

7. Эфиры азотной кислоты: этилнитрат С2Н5–О–NO2 и нитрат ацетонциангидрина

8. Борфторид нитрония [NO2]+BF4-. Очень сильный нитрующий агент для реакций, протекающих по электрофильному механизму.

Нитрование алканов по методу Коновалова

Парафиновые углеводороды при обычной температуре не реагируют с концентрированной азотной кислотой. Однако, применяя разбавленную азотную кислоту и проводя реакцию при повышенной температуре и повышенном давлении, можно осуществить нитрование парафиновых углеводородов:

 
  Нитрование алканов по методу Коновалова - student2.ru

Эта реакция была открыта в 1888 г. М. И. Коноваловым. Оптимальные результаты получаются при нитровании парафиновых углеводородов разбавленной 12,5% HNO3 (d = 1,075 г/мл). При действии концентрированной азотной кислоты или смеси азотной и серной кислот парафины окисляются. В реакцию жидкофазного нитрования вступают все углеводороды, однако наилучшие результаты получаются с парафинами, содержащими третичные углеродные атомы, труднее замещение происходит у вторичного и хуже всего у первичного.

В соответствии с этим углеводороды разветвленного строения нитруются лучше, чем изомерные им алканы нормального строения. При нитровании разбавленной азотной кислотой парафиновых углеводородов нормального строения образуются преимущественно вторичные нитросоединения с нитрогруппой у второго атома углерода.

Нитрование парафиновых углеводородов в паровой фазе осуществил в 1936 г. Хесс. В качестве нитрующего агента использовалась азотная кислота, в более поздних работах широкое применение нашли окислы азота. При парофазном нитровании азотной кислотой полинитросоединения не образуются. Так же, как и нитрование в жидкой фазе, нитрование в паровой фазе всегда сопровождается окислением. Реакцию проводят при большом избытке углеводорода, в широком интервале температур (250-600°С), большей частью при нормальном давлении. Оптимальная температура реакции 400-450°С, при более низких температурах нитрование часто не происходит, при более высоких в значительной степени протекает окисление и расщепление (деструкция).

Углеводороды нормального строения в большей степени подвержены деструкции, чем изомерные им углеводороды разветвленного строения.

Наши рекомендации