Механизм реакций нуклеофильного замещения

В случае вторичных и первичных алкилгалогенидов, как правило, реакция идёт как бимолекулярное нуклеофильное замещение SN2:

Механизм реакций нуклеофильного замещения - student2.ru

SN2 реакции являются синхронными процессами – нуклеофил (в данном случае OH-) атакует атом углерода, постепенно образуя с ним связь; одновременно с этим постепенно разрывается связь С-Br. Уходящий из молекулы субстрата бромид-ион в называется уходящей группой или нуклеофугом.

В случае SN2 реакций скорость реакции зависит от концентрации и нуклеофила, и субстрата:

v = k [S] [Nu]

v – скорость реакции,

k- константа скорости реакции

[S] – концентрация субстрата (т.е. в данном случае алкилгалогенида)

[Nu] – концентрация нуклеофила

В случае третичных алкилгалогенидов нуклеофильное замещение идёт по механизму мономолекулярного нуклеофильного замещения SN1:

Механизм реакций нуклеофильного замещения - student2.ru

трет-бутилхлорид трет-бутанол

Механизм этой реакции очень напоминает механизм реакций обмена в неорганической химии, является диссоциативным и идёт в две стадии:

Механизм реакций нуклеофильного замещения - student2.ru

карбокатион нуклеофил продукт

В случае SN1 реакций скорость реакции зависит от концентрации субстрата и не зависит от концентрации нуклеофила: v = k [S]

По таким же механизмам идут реакции нуклеофильного замещения и в случае спиртов и во многих других случаях.

Кроме реакций SN1 и SN2 замещение может идти по механизму SNi. Нуклеофильное замещение у винильного атома углерода может осуществляться по 10 различным механизмам, а нуклеофильное замещение в ароматических системах может идти по 4 различным механизмам.

Реакции элиминирования (отщепления) – дегидрогалогенирования

В результате реакций элиминирования в случае алкилгалогенидов образуется алкены и галогеноводороды.

Например, при нагревании этилхлорида с щёлочью в спирте происходит элиминирование HCl и идёт образование этилена:

Механизм реакций нуклеофильного замещения - student2.ru

Следует обратить внимание на то, что если проводить эту реакцию в воде, а не в спирте, то основным продуктом будет спирт, а не алкен.

В случае несимметричных алкилгалогенидов реакции дегидрогалогенирования идут в соответствии с правилом Зайцева:


Отщепление атома водорода в реакциях отщепления HX происходит от наименее гидрогенизированного атома углерода.

Например, отщепление бромоводорода от 2-бромбутана может происходить двумя путями:

Механизм реакций нуклеофильного замещения - student2.ru

Действительно, реализуются оба пути, но преимущественно образуется бутен-2 (80%), в то время как бутен-1 образуется в малом количестве (20%).

Механизмы реакций элиминирования

Элиминирование галогеноводородов может осуществляться по 3 основным механизмам: E1, E2 и E1cb

Механизм E1

Алкилгалогенид диссоциирует с образованием карбокатиона и галогенид-иона. Основание (B:) отрывает от образующегося карбокатиона протон с образованием продукта – алкена:

Механизм реакций нуклеофильного замещения - student2.ru

субстрат карбокатион продукт

Такой механизм характерен для третичных алкилгалогенидов.

Механизм E1cb

В этом случае последовательность другая: основание отрывает от алкилгалогенида протон с образованием карбоаниона, от которого потом отщепляется галогенид-ион с образованием алкена:

Механизм реакций нуклеофильного замещения - student2.ru

карбоанион

Этот механизм встречается нечасто, например он показан для реакции элиминирования HF от 1,1,1-трифтор-2,2-дихлорэтана.

Механизм E2

В этом случае отрыв протона и галогенид-иона происходит синхронно, т. е. одновременно:

Механизм реакций нуклеофильного замещения - student2.ru

Механизм E2 характерен в основном для первичных и вторичных алкилгалогенидов.

Аналогичные механизмы наблюдаются в случае элиминирования воды от спиртов и в других случаях.

Наши рекомендации