Рефлекс. Рефлекторная дуга и кольцо. Моно- и полисинапитические рефлексы. Регуляция функций с позиций кибернетики. Отрицательные и положительные обратные связи. 6 страница
84. Взаимоотношения первой и второй сигнальных систем и подкорковых образований. Механизмы целенаправленной деятельности человека. Схема деятельности функциональных систем организма.
Узловым механизмом высшей нервной деятельности является условный рефлекс. Однако поведение человека отнюдь не сводится к сумме или комплексу отражательных рефлекторных реакций. Оно представляет собой не просто рефлекторное приспособление к изменяющимся условиям среды с целью сохранения гомеостаза, а активное преобразование среды. Эта деятельность нередко вызывает нарушения гомеостаза и требует напряжения многих вегетативных регуляторных механизмов для восстановления этих нарушений. * . Деятельность человека связана с четким представлением о задаче, цели и ожидаемом результате действия, который необходимо достигнуть. «Паук совершает операции, напоминающие операции ткача, и пчела постройкой своих восковых ячеек посрамляет некоторых людей-архитекторов,-- писал К. Маркс.-- Но и самый плохой архитектор от наилучшей пчелы с самого начала отличается тем, что, прежде чем строить ячейку из воска, он уже построил ее в своей голове. В конце процесса труда получается результат, который уже в начале этого процесса имелся в представлении человека, т. е. идеально» '.. Цели, которыми руководствуется в своей деятельности человек, определяются его потребностями, как биологическими, так и с о ц и а л ь н ы м и. Существуют низ- шие и высшие потребности, т.е. иерархия потребностей. Удовлетворение их--основное условие, обеспечивающее жизнь человека.
Нейрофизиологическая структура целенаправленной деятельности очень сложна. С самого начала развития науки о мозге физиологи старались представить себе структуру поведенческих реакций в виде какой-либо модели или схемы. Степень сложности таких моделей соответствовала уровню знаний определенной эпохи. Модель всегда строилась по образцу известных человеку в тот момент механизмов. Декарт сформулировал принцип рефлекса, сыгравший важную роль для развития материалистического мировоззрения, на основе аналогии деятельности нервной системы и работ известных ему механических автоматов, запускаемых в ход нажатием на кнопку или рычаг. В такой конструкции имеет место постоянная связь, т. е. жесткое, однозначное взаимодействие ее элементов. И.П. Павловым был разработан весьма плодотворный, сыгравший огромную роль в развитии естествознания и философии принцип временной (условной) связи. Аналогия была взята из конструкции коммутатора телефонной станции. По мере изучения интимных механизмов саморегуляции физиологических процессов, появились схемы «.рефлекторного кольца» (Н.А. Бернштейн), в котором важная роль отводится процессам обратной связи, открытой еще в 60-х годах XIX в. И.М. Сеченовым, а также Ционом и Людвигом. Схема «функциональной системы», предложенная П.К. Анохиным для объяснения механизмов саморегуляции физиологических процессов и структуры поведенческих реакций организма, является одной из наиболее распространенных (рис. 243). В соответствии с этой схемой любой целенаправленной деятельности предшествует принятие решения путем «афферентного синтеза», т. е. анализа и синтеза афферентной информации, имеющей четыре источника и неодинаковое значение: биологическую мотивацию (инстинктивные потребности: пищевые, половые, оборонительные и т. п.), обстановочную афферентацию (условия окружающей среды), пусковую афферентацию (непосредственный стимул реакции) и память (информация, возникающая в результате жизненного опыта). Афферентный синтез заканчивается формированием программы действия, которая по П.К. Анохину, состоит из двух принципиально различных элементов: 1) эфферентной программы действия (ЭПД), т.е. определенной последовательности набора нервных команд, поступающих на исполнительные приборы -- эффекторы (скелетные мышцы, железы, внутренние органы), и 2) акцептора результата действия (АРД), т. е. нейронной модели предполагаемого результата, к которому должно привести данное действие. Осуществление программы действия приводит к результату, который оценивается организмом с помощью обратной афферемтации (ОА), т. е. обратной связи. Это звено замыкает сложную разомкнутую рефлекторную дугу в кольцо. Информация о реально полученном результате сравнивается с прогнозом, закодированным в АРД. В случае, если полученный результат соответствует ожидаемому, данная «функциональная система» прекращает свое существование, так как это значит, что цель стоявшая перед организмом, достигнута. Таким образом, «функциональная система» представляет собой временное объединение различных элементов нервной системы -- от рецепторов до исполнительных приборов, возникшее для выполнения конкретной задачи. Такая формулировка развивает сформулированную в 20-х годах нашего века концепцию А.А. Ухтомского о доминанте. По А.А. Ухтомскому, доминанта представляет собой временное объединение («созвездие или констелляцию») нервных центров (и других структур организма) для достижения вставшей перед организмом цели. Это объединение распадается и доминанта прекращает свое существование в тот момент, когда указанная цель достигнута (задача решена). Таким образом, поведение строится не по типу стимул -- реакция, а по принципу непрерывного кольцевого взаимодействия организма и среды. Любая деятельность начинается с создания плана и программы данной поведенческой реакции и нейронной модели ее будущего результата. При этом рефлекторная дуга не упраздняется, она органически вписывается в кольцо, представляя собой его часть. Подобные структуры поведенческих реакций организма основаны на описываемых кибернетикой принципах управления, общих для живого организма и для машины. Аналогом данной нейрофизиологической структуры поведенческих реакций является не механический автомат и не телефонный коммутатор, а электронно-вычислительная машина, осуществляющая управление работой других машин или производственным процессом по определенной программе. «Кольцевые» модели являются шагом вперед в понимании механизма поведенческих реакций и структуры поведения представляя собой современный уровень развития рефлекторной теории. Однако любые схемы -- это лишь определенная ступень на пути к познанию истинных механизмов работы мозга. Сами эти механизмы в действительности гораздо сложнее. Побуждение к действию для достижения полезного результата не заложено в мозге человека, не дано ему «свыше» и не является только «биологической мотивацией», направленной на выживание лишь данного организма и поддержания собственного гомеостаза
85. Взаимоотношения между процессами ВНД, обеспечивающими возникновение сознания и подсознания.
С осознанной и неосознанной деятельностью связанны несколько понятий: 1.Сознание- включает способности передавать другим свои знания. 2.Подсознание- автоматизированные навыки, этические и эстетические нормы. 3.Сверхсознание или интуиция.Им объясняются процессы творчества не контролируемые сознанием. Поэтому сверхсознание является источником озарений и открытий. Основой сверхсознания является перерабатывание определенных следов памяти, их сложная комбинация и создание совершенно новых связей. Сознательное восприятие осуществляется нейронами сенсорных зон коры. От них нервные импульсы идут к ассоциативным нейронам. К ним же поступает информация и из памяти. В результате взаимодействия этих сигналов формируется осознанное восприятие. Активность сознания возрастает под влиянием ретикулярной формации.
Ощущение - это простейший психический процесс, состоящий в отражении отдельных свойств предметов, внутренних состояний организма, возникающий в результате непосредственного воздействия на органы чувств.
По месту расположения рецепторов: 1. Экстерорецептивные ощущения - ощущения, связанные с рецепторами, находящимися на поверхности тела: зрительные, слуховые, обонятельные, вкусовые и кожные. 2. Интерорецептивные (органические) - ощущения, связанные с рецепторами, находящимися во внутренних органах. 3. Проприоцептивные ощущения - (двигательные) ощущения, рецепторы которых находятся в мышцах, связках и вестибулярном аппарате. Ощущения собственных движений и пространственного положения тела. В зависимости от разновидности анализатора различают следующие виды ощущений: зрительные, слуховые, кожные, обонятельные, вкусовые, кинестезические, статические.
Восприятие - психический процесс отражения предметов или явлений действительности при их непосредственном воздействии на органы чувств.
86. Анализ и синтез раздражений в коре больших полушарий. Динамический стереотип. Условно-рефлекторное переключение.
Все сигналы, поступающие из внешней среды, подвергаются анализу и синтезу. Анализ - это дифференцировка, т.е. различение сигналов. Рефлекторный анализ начинается в самих рецепторах и заканчивается в подкорковых отделах Ц.Н.С. Высший анализ осуществляется К.Б.П. Он происходит за счет дифференцировочного торможения и условного тормоза. Способствует анализу процесс концентрации возбуждения в коре. Синтез - это объединение сигналов и формирование целостного восприятия их группы. Примером простейшего синтеза является выработка условного рефлекса. В результате нее 2 разнородных стимула вызывают одинаковую рефлекторную реакцию. Анализ и синтез - взаимосвязанные и одновременно протекающие процессы. В результате синтеза формируется динамический стереотип (ДС). Динамический стереотип -это цепь условно-рефлекторных реакций на последовательное воздействие ряда условных и безусловных раздражителей, повторяемых в строго определённой последовательности. После его закрепления, окончание одного рефлекса запускает следующий и т.д. Более того, первый стимул в этом ряду, приобретает свойство запускать всю цепь условных рефлексов. Так как анализ и синтез наиболее высокоорганизованны у человека, его мозгу свойственно образование множества стереотипических реакций. В частности формированием соответствующего динамического стереотипа объясняется возникновение привычек, привязанностей, навыков в выполнении привычной работы, обучении. В этом заключается положительная роль динамического стереотипа.. Отрицательная, состоит в том, что его перестройка это длительный и трудный процесс. Поэтому он препятствует переобучению. Кроме этого, у людей со слабым типом нервной деятельности перестройка динамического стереотипа сопровождается нарушениями нервно-психической деятельности, в виде неврозов и психозов (резкая смена обстановки, привычной деятельности и т.д.). Одновременно явлением Д.С. во многом объясняются вредные привычки, например курение и бытовое пьянство.
87. Эмоции и их классификации. Анатомический субстрат и происхождение эмоций. Проявление эмоций и степени состояния напряжения. Значение эмоций
Эмоции – субъективное переживание человеком своего внутреннего состояния, в частности потребностей, а также социальных факторов окружающей среды.
Эндогенные эмоции. Эмоциональные возбуждения возникают первично в мотивациогенных центрах гипоталамуса, а затем генерализованно распространяются в восходящем направлении на лимбические структуры и кору большого мозга. Таким путем формируются ощущения потребностей голода, жажды, страха, полового возбуждения.
Экзогенные эмоции. Эмоциональные реакции возникают под первичным влиянием внешних воздействий. В этом случае возбуждения, вызванные действием на организм внешних факторов, первично по специфическим сенсорным путям достигают клеток соответствующих проекционных зон коры большого мозга и активируют корковые механизмы памяти. Только после этого возбуждения распространяются в нисходящем направлении на лимбические центры, формируя в зависимости от внешних воздействий и следов памяти в одних случаях положительные, а в других — отрицательные эмоциональные реакции субъекта.
Характиристика:Валентность. Все эмоции характеризуются валентностью (или тоном) — то есть могут быть либо положительными, либо отрицательными. Количество видов отрицательных эмоций, обнаруживаемых у человека, в несколько раз превышает количество видов положительных эмоций.
Интенсивность.Эмоции могут различаться по интенсивности (силе). Чем сильнее эмоция, тем сильнее её физиологические проявления.
Стеничность.Стенические эмоции побуждают к активной деятельности, мобилизуют силы человека (радость, энтузиазм). Астенические эмоции расслабляют или парализуют силы (тоска, грусть).
Содержание.Эмоции бывают разными по содержанию, отражая различные аспекты значения вызвавших их ситуаций. Выделяются десятки различных эмоций, причём количество отрицательных эмоций в несколько раз превосходит количество положительных.
Мимика — универсальный способ проявления эмоций среди людей. Центр распознавания эмоций располагается в правом полушарии головного мозга и имеет отличную от центра распознавания лиц локализацию
Стадии степени напряжения: 1-мобилизация ресурсов организма, усиление его функциональных возможностей, что способствует повышению его работоспособности, 2-Возникает стеническая отрицательная эмоциональная реакция(ярость, гнев), 3-Отрицательная асценическая развязка, истощение ресурсов организма, приходит состояние ужаса, страха, тоски, 4-стадия невроза(нарушение ВНД),
88. Современные представления о механизмах памяти. Виды памяти. Физическая и химическая теории памяти.
Память — способность живых существ запоминать, сохранять и воспроизводить информацию о ранее воздействовавших на них событиях. Память тесно связана с обучением.
Виды памяти. 3 вида памяти: кратковременную, промежуточную и долговременную.
Кратковременная память определяет значимость поступающей информации для организма. Если эта информация важна для организма, особенно для удовлетворения его ведущих потребностей, она затем обрабатывается в промежуточной памяти и переходит в долговременную память. В противном случае она быстро забывается.
Промежуточная память определяет сохранение полученной организмом информации в течение нескольких минут или часов. (так называемая рабочая память).
Долговременная память сохраняется всю жизнь. .
Процесс памяти включает 4 стадии: - восприятие, запечатление, запоминание информации; - хранение информации; - воспроизведение необходимой информации; - забывание.
Кратковременная память формируется на основе непосредственно сенсорного отпечатка внешнего мира. При этом в памяти уже удерживается ограниченная, выделенная информация о внешней среде. Кратковременная память позволяет в течение нескольких секунд или минут удерживать и воспроизводить отобранную часть информации.
Процессы последующей за кратковременной промежуточной памяти обычно разыгрываются в течение нескольких часов после обучения. В этот период времени экстремальные механические и химические воздействия способны стереть память, но по истечении 4 ч следы кратковременной памяти становятся устойчивыми. Происходит консолидация памяти.
Кратковременная память нарушается при таких воздействиях на организм, как электрошок, сильные мозговые травмы, судороги, наркоз, гипоксия. При этом наблюдается ретроградная амнезия — потеря памяти на события, предшествовавшие воздействию.
В основе современных представлений о механизмах кратковременной памяти лежит несколько гипотез: корково – подкорковая реверберация возбуждений, синаптическая теория. Долговременная память определяет сохранение ранее полученной информации в течение длительного времени. Процессы фиксации следов в долговременной памяти осуществляются лучше при повторных воздействиях.
Долговременная память по своему механизму качественно отличается от кратковременной памяти и не нарушается при таких экстремальных воздействиях на мозг, как механическая травма, электрошок, наркоз и др.
Механизм долговременной памяти окончательно не установлен. Несколько теорий с разных позиций объясняют механизмы долговременной памяти: морфологические теории, глиальная теория, медиаторная теория, молекулярные теории.
1 .Химическая теория. В её основе лежат опыты с "транспортом памяти" (обучение животных - введение экстракта их мозга необученным животным, опыты со скотофобином). Согласно этой теории информация хранится в специальных белках синтезируемых нейронами.
2.Теория хранения энграммы в ДНК. Предполагают, что ДНК программирует необходимые изменения структуры и свойств синапсов и таким образом обеспечивает перестройку нейронных цепей в процессе запоминания.
89.Сон и его виды. Физиологические изменения во время сна. Теория необходимости и механизмы сна. Роль ретикулярной формации в механизме засыпания, сна и пробуждения. Современные представления о механизмах сна (П.К.Анохин).
Сон — физиологическое состояние, которое характеризуется потерей активных психических связей субъекта с окружающим миром.
Биологическое значение сна: активность мозга во время сна часто превосходит дневные уровни. Показано, например, что во время сна активность нейронов ряда структур мозга существенно возрастает. Во сне наблюдается и активация ряда вегетативных функций. Все это позволило рассматривать сон не как снижение процессов жизнедеятельности, а как активный физиологический процесс, активное состояние жизнедеятельности. Некоторые исследователи рассматривают сон наряду с бодрствованием как второе состояние жизнедеятельности организма. Классификации сна: По способу развития-физиологический, патологический, наркотический. По суточному ритму- полифазный, монофазный.
Теории сна: 1.Гуморальная теория( сон фозникает при проявлении в крови специфических гипнотоксинов), 2.Теория информационного дефицита(причина сна-ограничение притока сенсорной информации), 3.Теории нервных центров(при возбуждении некоторых нейронов ретикулярной формации животное засыпает), 4.Коркоро-подкорковая теория описывает механизм сна(при развитии утомления активность в нейронах коры уменьшается. Восходящая ретикулярная тормозная система угнетает восходящую ретикулярную активирующую систему, тем самым меньше импульсов поступает в кору, это продолжается до тех пор, пока человек не засыпает. Включении ВРАС способствуют внутренние биоритмы, внешние(яркий свет) и внутреннии(импульс от мочевого пузыря) факторы.
Ретикулярная теория сна и бодрствования
В ретикулярной формации ствола мозга находится множество нейронов, аксоны которых идут почти ко всем областям головного мозга (кроме неокортекса). В конце 1940-х годах Моруцци и Мэгуном было обнаружено, что высокочастотное раздражение ретикулярной формации ствола мозга кошек приводит к их мгновенному пробуждению. Повреждение ретикулярной формации вызывает постоянный сон, перерзка же сенсорных трактов такого эффекта не дает.
Ретикулярную формацию стали рассматривать как область головного мозга, участвующую в поддержании сна. Сон наступает, когда ее активность пассивно, либо под действием внешних факторов падает. Активация ретикулярной формации зависит от количества сенсорных импульсов, поступающих в нее, а так же от активности нисходящих волокон между передним мозгом и стволовыми структурами. Однако позднее было установлено, что:
1. Во-первых: ретикулярная формация вызывает не только бодрствования, но и сон, что зависит от места наложения электродов при стимуляции ее электрическим раздражителем.
2. Во-вторых: нейронное состояние ретикулярной формации в бодрствующем состоянии и во время сна мало, чем отличается.
3. В-третьих: ретикулярная формация является не единственным центром бодрствования: они так же представлены и в медиальном таламусе, и в переднем гипоталамусе.
90. ЭЭГ картина сна. Медленный и “парадоксальный” сон. Причины сноведения. Норма сна. Гипноз.
Фазы сна отчетливо проявляются на электроэнцефалограмме и повторяются примерно с полуторачасовой цикличностью. В спокойном состоянии у человека с закрытыми глазами проявляется альфа-ритм, при котором частота волн электрической активности мозга концентрируется в области 8-12 Гц. После засыпания амплитуда электрической активности мозга снижается, а основной ритм (8-12 Гц) замедляется до 3-7 Гц (тета-волны).
У здорового человека сон начинается с первой стадии медленного сна (Non-REM сон), которая длится 5-10 минут. Затем наступает 2-я стадия, которая продолжается около 20 минут. Ещё 30-45 минут приходится на период 3-4 стадий. После этого спящий снова возвращается во 2-ю стадию медленного сна, после которой возникает первый эпизод быстрого сна, который имеет короткую продолжительность — около 5 минут. Вся эта последовательность называется циклом. Первый цикл имеет длительность 90-100 минут. Затем циклы повторяются, при этом уменьшается доля медленного сна и постепенно нарастает доля быстрого сна
Медленный сондлится 80-90 минут. Наступает сразу после засыпания.
Первая стадия. Альфа-ритм уменьшается и появляются низкоамплитудные медленные тета-ритмы, по амплитуде равные или превышающие альфа-ритм. Поведение: дремота с полусонными мечтаниями. Мышечная активность снижается, снижается частота дыхания и пульса, замедляется обмен веществ и понижается температура, глаза могут совершать медленные движения.. В ЭЭГ могут регистрироваться острые волны.В этой стадии могут отмечаться гипногогические подергивания.
Вторая стадия. (неглубокий или лёгкий сон). Дальнейшее снижение тонической мышечной активности. Сердечный ритм замедляется, температура тела снижается, глаза неподвижны. В ЭЭГ доминируют тета волны, появляются так называемые «сонные веретёна» — сигма-ритм, который представляет собой учащённый альфа-ритм (12—14—20 Гц).
Третья стадия. медленный сон. Стадия классифицируется как 3-я, если дельта-колебания (2 Гц) занимают менее 50 % и 4-я стадия — если дельта составляет более 50 %.
Четвёртая стадия. Самый глубокий медленный дельта-сон. Преобладают дельта-колебания (2 Гц). В это время человека разбудить очень сложно; возникают 80 % сновидений, и именно на этой стадии возможны приступы лунатизма, ночные ужасы, разговоры во сне и энурез у детей. Однако человек почти ничего из этого не помнит.
Быстрый сон (парадоксальный сон). Это — пятая стадия снаБыстрый сон следует за медленным и длится 10—15 минут. В этот период электрическая активность мозга сходна с состоянием бодрствования. Вместе с тем (и это парадоксально!) в этой стадии человек находится в полной неподвижности, вследствие резкого падения мышечного тонуса. Однако глазные яблоки очень часто и периодически совершают быстрые движения под сомкнутыми веками
При углублении сна на фоне медленной низковольтной активности появляются более высоковольтные электрические колебания с частотой 12-15 Гц. Это так называемые сонные веретена. Они возникают периодически и длятся не более 1 секунды. При дальнейшем углублении сна начинают преобладать высокоамплитудные низкочастотные колебания 0,5-2 Гц (дельта-волны). Самая глубокая фаза сна сопровождается сменой дельта-волн на быстрые низкоамплитудные колебания, похожие на те, которые характеризуют состояние бодрствования. В последней глубокой фазе сна появляются быстрые сокращения глазных мышц.
Во время сна меняются многие вегетативные и моторные показатели, характерные для спокойного бодрствования. Снижается энергия метаболизма, уменьшаются легочная вентиляция, частота пульса, температура тела, амплитуда электромиограммы, мышечный тонус, спинальные рефлексы. Увеличивается кровоток в мозге. Все изменения цикличны. Всего в течение ночи человек реализует 4-6 полных циклов сна. Первый цикл содержит всего 10 минут глубокого сна с быстрыми движениями глазных яблок и полным расслаблением мышц. Для регуляции циклов сна, как и поддержания бодрствования, наиболее важной считается внутренняя область варолиева моста и ствола мозга.
Сновидения — это особая категория бессознательного проявления нервной деятельности в виде образных представлений. У каждого индивидуума сновидения уникальны и зависят от характерного образа жизни. Например, слепорожденные люди никогда не видят визуальных снов. Особенностью сновидений, как показали психологические исследования, является то, что никогда не возникает чувства усталости. Следует также отметить, что во время сновидений нарушается восприятие времени, искажается хронометраж. Например, проснувшемуся человеку может показаться, что он спал всего несколько минут, в то время как прошло несколько часов с момента засыпания» и наоборот. Эту особенность используют при длительных перелетах, когда идет смена часовых поясов и необходимо ускорить процессы адаптации к новому временному режиму.
Гипноз- это состояние неполного выключения сознание, близкое ко сну, при котором сохраняется восприятие речи, повышается реакция на слова. Стадии вхождения в гипноз: 1.гипноидность-расслабление мышц, глаза начинают закрываться, эту стадию можно прервать, 2.Легкий транс- конечности долго могут находится в необычном положении, 3.Средний транс- амнезия, изменение свойств личности, 4.Глубокий транс- характерны фантастичесике внушения
.
91. Физиология анализаторов, их строение и функции. Классификация рецепторов. Механизм активации рецепторов. Закон Вебера-Фехнера. Основные свойства рецепторов.
Анализатор - это совокупность рецепторов и нейронов мозга, участвующих в обработке информации о сигналах внешнего или внутреннего мира и в получении о них представления (ощущения, восприятия). Все анализаторы, по И.П. Павлову, состоят из трех основных отделов: периферического - в нем происходит превращение сигнала внешнего мира в электрический процесс; проводникового - в нем происходит обработка информации и проведение ее в высшие отделы мозга и центрального (коркового), в котором происходит окончательная обработка сенсорной информации и возникает субъективный образ сигнала.
ОБЩИЙ ПРИНЦИП СТРОЕНИЯ АНАЛИЗАТОРОВ Вспомогательные структуры могут быть очень сложными. Например, оптическая система глаза, или более простыми - тактильные рецепторы в коже. Через вспомогательные структуры внешний стимул доходит до рецептирующего субстрата, определяющего модальность рецептора, и взаимодействует с ним.
Рецептор - это специализированная структура (клетка или окончание афферентного волокна), которая в процессе эволюции приспособилась к восприятию соответствующего раздражителя внешнего или внутреннего мира. Стимул, который является эффективным в данном случае, называют адекватными раздражителем. В физиологических исследованиях было обнаружено, что каждый рецептор реагирует чаще всего на стимулы какого-то одного типа (мономодальный рецептор). Все рецепторы по характеру воспринимаемой среды делятся на: экстерорецепторы, принимающие раздражения из внешней среды (рецепторы органов слуха, зрения, обоняния, вкуса, осязания);интерорецепторы, реагирующие на раздражения из внутренних органов;проприорецепторы, воспринимающие раздражения из двигательного аппарата (мышц, сухожилий, суставных сумок).
По виду воспринимаемых раздражении различают:хеморецепторы (рецепторы вкусовой и обонятельной сенсорных систем, хеморецепторы сосудов и внутренних органов); механорецепторы (проприорецепторы двигательной сенсорной системы, барорецепторы сосудов, рецепторы слуховой, вестибулярной, тактильной и болевой сенсорных систем); фоторецепторы (рецепторы зрительной сенсорной системы);терморецепторы (рецепторы температурной сенсорной системы кожи и внутренних органов).
По характеру связи с раздражителем различают: дистантные рецепторы, реагирующие на сигналы от удаленных источников и обусловливающие предупредительные реакции организма (зрительные и слуховые); контактные, принимающие непосредственные воздействия (тактильные и др.).
По структурным особенностям различают: первичные рецепторы – это окончания чувствительных биполярных клеток, тело которых находится вне ЦНС, один отросток подходит к воспринимающей раздражение поверхности, а другой направляется в ЦНС (например, проприорецепторы, терморецепторы, обонятельные клетки); вторичные рецепторы, которые представлены специализированными рецепторными клетками, расположенными между чувствительным нейроном и точкой приложения раздражителя (например, фоторецепторы глаза).
Таким образом, все рецепторы любой сенсорной системы являются обязательной частью периферического отдела анализатора С периферии информация передается в ЦНС в закодированной форме, в виде потенциалов действия (нервных импульсов) по афферентным нервным волокнам.
К проводниковому отделу каждого анализатора относятся афферентные нервные волокна и нервные клетки спинного, продолговатого и промежуточного отделов мозга, аксоны которых проводят импульсы к коре больших полушарий.
Афферентные нейроны - это первые нейроны, которые участвуют в обработке сенсорной информации, поступающей от рецепторов кожи, мышц, суставов и внутренних органов. Как правило, тела афферентных нейронов лежат в различных ганглиях (спинномозговых, головы и шеи. вестибулярном, спиральном, коленчатом и т.д.), за исключением зрительного анализатора, афферентные нейроны которого (ганглиозные клетки) находятся непосредственно на сетчатке. От всех частей тела, за исключением головы, периферические нервы (афферентные волокна) идут к спинномозговым ганглиям и аксоны этих клеток в составе задних корешков поступают в спинной мозг. Таким образом, основная функция афферентных нервных волокон - это передача информации с рецепторного аппарата.