Особливості хімічного складу та метаболізму нервової тканини

Основний зміст

Питання 1.

Нервова тканина за своїм складом і процесами метаболізму значно відрізняється від інших тканин. Її основними функціями є генерація електричного сигналу, проведення нервового імпульсу, запам’ятовування та зберігання інформації, формування емоцій і поведінки, мислення. Виконання всіх цих процесів забезпечують три типи клітинних елементів: нейрони (нервові клітини); нейроглія (системи клітин, що безпосередньо оточують нервові клітини в головному і спинному мозку); мезенхімальні елементи, що формують мікроглію – гліальні макрофаги.

Основна маса головного мозку представлена першими двома типами клітинних елементів. Нейрони зосереджені в сірій речовині (60 – 65 % від усієї речовини головного мозку), тоді як біла речовина ЦНС і периферійні нерви складаються, основним чином, з елементів нейроглії та їх похідного – мієліну. Завдяки останньому провідна система має властивість з високою швидкістю передавати нервові імпульси.

Особливості хімічного складу та метаболізму нервової тканини

Сіра речовина головного мозку представлена в основному тілами нейронів, а біла – аксонами. У зв’язку з цим зазначені відділи мозку значно різняться за своїм хімічним складом. Ці відмінності носять насамперед кількісний характер. Кількість води в сірій речовині головного мозку помітно більша, ніж у білій. У сірій речовині білки становлять половину сухого залишку, а в білій – третину, на частку ліпідів у білій речовині припадає понад половини сухого залишку, у сірій – біля 30%.

Специфіку нервової тканини визначає гематоенцефалічний бар’єр (ГЕБ), який має вибіркову проникність для різноманітних метаболітів, він також сприяє накопиченню деяких речовин у нервовій тканині. Наприклад, частка глутамату та аспартату в нервовій тканині становить приблизно 70 – 75 % від загальної кількості амінокислот.

Білки та амінокислоти. На частку білків припадає приблизно 40 % сухої маси головного мозку. При перерахунку на сиру масу тканини білки розподіляються приблизно порівну між сірою (8 %) і білою (9 %) речовинами головного мозку.

У нервовій тканині містяться як прості, так і складні білки. Прості білки – це альбуміни, глобуліни, основні білки (гістони тощо) і опорні білки (нейросклеропротеїни). Альбуміни і глобуліни за своїми фізико-хімічними властивостями дещо відрізняються від аналогічних білків сироватки крові, тому їх називають нейроальбумінами і нейроглобулінами. Кількість нейроглобулінів у головному мозку становить в середньому 5 % від всіх розчинних білків. Нейроальбуміни є основним білковим компонентом фосфопротеїнів нервової тканини, на їхню частку припадає основна маса розчинних білків (89 – 90 %). У вільному стані нейроальбуміни зустрічаються рідко, вони легко сполучаються з ліпідами, нуклеїновими кислотами, вуглеводами й іншими небілковими компонентами.

Нейросклеропротеїни можна охарактеризувати як структурно-опорні білки. Основні представники цих білків – нейроколаген, нейроеластин тощо. Вони становлять приблизно 8 – 10 % від загальної кількості простих білків нервової тканини і локалізовані в основному в білій речовині головного мозку й у периферійній нервовій системі.

Складні білки нервової тканини представлені нуклеопротеїнами: ліпопротеїнами, протеоліпідами, фосфопротеїнами, глікопротеїнами тощо. У нервовій тканині містяться в значній кількості ще складніші надмолекулярні утворення, такі, як ліпонуклеопротеїни, ліпоглікопротеїни і, можливо, ліпогліконуклеопротеїнові комплекси. Нуклеопротеїни належать до дезоксирибонуклеопротеїнів або до рибонуклеопротеїнів. Ліпопротеїни становлять значну частину водорозчинних білків нервової тканини. Їх ліпідний компонент – це в основному фосфогліцериди і холестерин.

Протеоліпіди – це білковоліпідні сполуки, які екстрагуються органічними розчинниками з тканини мозку. Відрізняються від водорозчинних ліпопротеїнів тим, що вони нерозчинні у воді, але розчинні у суміші хлороформ-метанол. Найбільша кількість протеоліпідів зосереджена в мієліні, у невеликих кількостях вони входять до складу синаптичних мембран і синаптичних міхурців.

Фосфопротеїни в головному мозку містяться в більшій кількості, ніж в інших органах і тканинах – біля 2 % від загальної кількості всіх складних білків мозку. Вони виявлені в мембранах різноманітних морфологічних структур нервової тканини.

Глікопротеїни представленні гетерогенною групою білків. За кількістю білків і вуглеводів, які входять до складу глікопротеїнів, їх можна поділити на дві основні групи. Перша група – це глікопротеїни, які містять 5 – 40 % вуглеводів і їх похідні; білкова частина складається переважно з альбумінів і глобулінів. У глікопротеїнах, що входять у другу групу, міститься 40 – 85 % вуглеводів, часто виявляється ліпідний компонент, за складом вони можуть бути зараховані до гліколіпопротеїнів.

Ферменти.У нервовій тканині міститься велика кількість ферментів, які каталізують обмін вуглеводів, ліпідів і білків. З ЦНС ссавців виділені лише деякі ферменти, зокрема ацетилхолінестераза та креатинкіназа.

Значна кількість ферментів у нервовій тканині знаходиться в кількох молекулярних формах (ізоформах): ЛДГ, альдолаза, креатинкіназа, гексокіназа, малатдегідрогеназа, глутаматдегідрогеназа, холінестераза, кисла фосфатаза, моноаміноксидаза тощо.

Нуклеїнові кислоти.Оскільки нервові клітини позбавлені поділу, то, відповідно, у них не відбувається синтез ДНК. Проте, вміст РНК в них найвищий порівняно з іншими тканинами організму, швидкість синтезу РНК теж достатньо велика. Як і в інших тканинах, у нервовій тканині нуклеїнові кислоти забезпечують збереження та передавання генетичної інформації, а також її реалізацію під час синтезу клітинних білків. Потужні подразники, такі як голосні звуки, яскраві зорові стимули чи емоції призводять до підвищення синтезу і РНК і білка в певних ділянках мозку. Це доводить, що зміни в нервовій системі, які відображають індивідуальний досвід організму, кодуються в вигляді синтезованих макромолекул. Інформація, завдяки якій нейрони встановлюють лише певні зв’язки з окремими нейронами, кодується в структурі полісахаридних відгалужень мембранних глікопротеїнів. Утворення таких зв’язків, не закладених у період ембріонального розвитку, є результатом досвіду індивідуального організму і становить матеріальну основу для збереження інформації, яка буде визначати особливості поведінки даного організму.

Ліпіди.Серед хімічних компонентів головного мозку особливе місце займають ліпіди, високий вміст і специфічна природа яких надають нервовій тканині характерних властивостей, оскільки ліпіди входять до складу клітинних мембран нейронів, забезпечують надійну електричну ізоляцію, слугують активними антиоксидантами (гангліозиди), виступають попередниками багатьох біологічно активних речовин.

Ліпіди постійно оновлюються, але швидкість їх оновлення різна, здебільшого, низька. Так, цереброзиди, сфінгомієліни оновлюються впродовж багатьох місяців і навіть років. Виключення становлять фосфогліцериди сірої речовини мозку (фосфатидилхоліни і особливо фосфатидилінозитол), для оновлення яких потрібно кілька діб або тижнів.

Шляхи біосинтезу фосфогліцеридів у мозку подібні з тими, що здійснюються в інших тканинах. Жирні кислоти утворюються в основному з глюкози, частково їх синтез відбувається з ацетоацетату, цитрату і навіть ацетиласпартату.

Вуглеводи.Порівняно з іншими тканинами мозкова тканинами бідна на вуглеводи. Загальний вміст глюкози в головному мозку різних тварин становить в середньому 1 – 4 мкмоль/г тканини, а глікогену – 2,5 - 4,5 мкмоль/г тканини. Цікаво відзначити, що загальний вміст глікогену в мозку ембріонів і новонароджених тварин в три рази перевищує такий у дорослих. У міру росту та диференціювання мозку концентрація глікогену швидко знижується і залишається постійною у дорослої тварини.

Питання 2

Біохімія м'язів

На м'язи припадає 40-45 % маси тіла. Вони вивчаються науковцями протягом кількох століть. З початку ХХ століття м'язи почали досліджувати як біохімічний комплекс. Але і зараз, в кінці ХХ століття, інтерес до них не зменшився. Крім біохіміків, м'язи вивчають біофізики, фізіологи, а також спеціалісти із спорту.

Морфологічно м'язи у хребетних тварин поділяють на поперечно­смугасті, або скелетні, та гладенькі. Поперечносмугасті м'язи скорочуються лише на 1/3 від вихідної величини, тоді як гладенькі м'язи, скорочуючись, можуть зменшувати свій поздовжній розмір навіть у декілька разів, наприклад, м'яз матки під час пологів. Відповідно гладенькі м'язи скорочуються повільніше – через де­кілька секунд, поперечносмугасті – через кілька мілісекунд. Під час скорочення скелетні м'язи можуть виконувати роботу, вкорочуючись при цьому на певну відстань. Таке скорочення називають ізотонічним. М'язи, які не можуть укорочуватись під час скорочення (не можуть виконувати фізичної роботи), розвивають тільки напруженість. Про такі м'язи говорять, що вони скорочуються за ізометричним принципом. Прикладом такого скорочення може бути зміна напруженості коротких міжхребцевих м'язів при піднятті вантажів. Для всіх видів скорочення м'язів характерним є виділення певної кількості теплової енергії, спричиненої структурними перебудовами в міоцитах. Функції і властивості м'язів зумовлені їх хімічною структурою.

Червоний колір м'язів зумовлений великим вмістом у них міоглобіну. Міо­глобін має в 5 разів більшу спорідненість із киснем, ніж гемоглобін. Це сприяє забезпеченню значного резерву кисню в м'язовій тканині при його нестачі.

Скелетні м’язи під мікроскопом мають вигляд довгих волокон, в яких регулярно чергуються світлі й темні смуги; гладкі – складаються з коротких волокон, що не містять смуг. Структурною одиницею м’язової тканини є м’язове волокно (міоцит), яке утворилося в результаті злиття багатьох ембріональних м’язових клітин. Саме тому кожне м’язове волокно містить багато ядер, що розташовані по краях по всій довжині. Поперечносмугасті м’язи скорочуються лише на 1/3 від вихідної величини, тоді як гладенькі м’язи скорочуючись, можуть зменшувати свій поздовжній розмір навіть у декілька разів, наприклад, м’яз матки під час пологів. Відповідно гладенькі м’язи скорочуються повільніше – через декілька секунд, поперечносмугасті – через кілька мілісекунд. Під час скорочення скелетні м’язи можуть виконувати роботу, вкорочуючись при цьому на певну відстань. Таке скорочення називають ізотонічним. М’язи, які не можуть укорочуватись під час скорочення (не можуть виконувати фізичної роботи), розвивають тільки напруженість. Про такі м’язи говорять, що вони скорочуються за ізометричним принципом. Прикладом такого скорочення може бути зміна напруженості коротких міжхребцевих м’язів при піднятті вантажів. Для всіх видів скорочення м’язів характерним є виділення певної кількості теплової енергії, спричиненої структурними перебудовами в міоцитах. Функції і властивості м’язів зумовлені їх хімічною структурою.

М’язова тканина тварин і людини містить від 73 до 78% води. Приблизно 22-27% від маси м’яза припадає на частку сухого залишку, переважно білків. Окрім білків, у м’язах знаходяться глікоген та інші вуглеводи, різні ліпіди, екстрактивні речовини та мінеральні солі.

У м’язах розрізняють три види білків: білки саркоплазми, білки міофібрил і білки строми. У саркоплазмі м’язів містяться білки, що розчиняються у воді або сольових розчинах. Донедавна в цих білках розрізняли міогенну, альбумінову, глобулінову та міоглобінову фракції. Але ці фракції неоднорідні. Так, міогенна фракція включає в себе ряд ферментів гліколізу. Неоднорідними є й інші білки саркоплазми. Зокрема тут виявлено білки-ферменти, що знаходяться в мітохондріях і відповідають за тканинне дихання. Міоальбумін саркоплазми за хімічними властивостями нагадує альбумін плазми крові. Міоглобін м’язів – типовий хромопротеїн, що, як і гемоглобін, з’єднується з киснем і забезпечує процес дихання м’язів. Червоний колір м’язів зумовлений великим вмістом у них міоглобіну. Він має в 5 разів більшу спорідненість із киснем, ніж гемоглобін. Це сприяє забезпеченню резерву кисню в м’язовій тканині при його нестачі.

Мінеральні речовини. Загальний уміст мінеральних речовин в м’язах на сиру масу становить 1,0-1,5%. Із катіонів у м’язах переважають К+, Na+, Са2+, Мg2+, є також мідь, марганець, цинк; з аніонів – найбільше фосфатів та сульфатів. За рахунок іонів у м’язах підтримуються сталість рН і осмотична рівновага та здійснюється специфічний вплив на їх збудливість та скоротливість. Зниження концентрації солей у м’язах призводить до зменшення їх збудливості.

Джерелом енергії для скорочення і розслаблення м”язів усіх типів є АТФ. У стані спокою м”язи містять близько 5 мкмоль АТФ на 1 г тканини й у 3-8 разів більше креатинфосфату (макроергічний субстрат). Але запасів АТФ і креатинфосфату вистачає тільки на 6-10с інтенсивної роботи скелетних м”язів. Ресинтез АТФ у м”язах, які працюють, забезпечується, залежно від умов, окисним або субстратним фосфорилюванням. При легкій і помірній фізичній роботі скелетні м”язи покривають потреби у АТФ за рахунок окиснювального фосфорилювання, тобто за рахунок таких субстратів як глюкоза, ВЖК, кетонові тіла. При тривалій інтенсивній фізичній роботі використання глюкози поступово зменшується, а мобілізація жирів із жирових депо і використання ВЖК як енергетичних субстратів збільшується. При максимальних фізичних навантаженнях розвивається гіпоксія і АТФ утворюється переважно шляхом субстратного фосфорилювання у анаеробному гліколізі.

Питання 3.

Кров – найбільш спеціалізована рідка тканина, що циркулює в судинній системі й разом із лімфою та міжклітинним простором складає внутрішнє середовище організму. Кров поєднує біохімічні процеси різних частин тіла в цілісну систему та підтримує постійність її складу.

У дорослої людини об'єм крові становить у середньому 5 л. Більша частина крові бере участь у кровообігу, а менша знаходиться в окремих органах (депо). На сухий залишок крові припадає 16-17 % (850 г). За масою кров в організмі перевершують тільки м'язи і кістки.

Якщо загальмувати згортання крові й відцентрифугувати її, то вона розділиться на два шари: 1) верхній – рідкий, із жовтим відтінком – плазма. На неї припадає 55 % об'єму крові; 2) нижній – клітини крові (45 %). Осіла кров утворює згусток, що скорочується, над яким розміщується прозора рідина. Це сироватка (дефібринована плазма).

Відносна густина цільної крові – 1,050-1,064; плазми – 1,024‑1,030; клітин – 1,080-1,097. Крові притаманна висока в'язкість завдяки високому вмісту білка й еритроцитів. Осмотичний тиск крові, зумовлений сумою всіх розчинних речовин, що знаходяться в одиниці об'єму при температурі 37 °С, складає приблизно 7,6 атм. Він спричинений хлоридом натрію та іншими низькомолекулярними речовинами крові. Вклад білків, переважно альбуміну, в цю величину незначний – 0,03 атм. Він називається колоїдно-осмотичним, або онкотичним, тиском крові. Кров, проходячи через різні тканини й органи, забезпечує їх поживними речовинами, забирає від них відпрацьовані метаболіти, так звані "метаболічні шлаки", які несуть інформацію про стан організму. Тому кров вважають "внутріш­нім дзеркалом організму", яке показує стан метаболізму всього організму. Через ці причини в клініці та в наукових цілях аналіз крові широко за­сто­совують для діагностики захворювань і контролю ефективності лікування.

Кров виконує такі функції:

1) транспорт газів – перенесення із легень до тканин кисню, а у зворотному напрямку – вуглекислого газу;

2) транспорт поживних речовин до всіх клітин організму (глюкози, амінокислот, жирних кислот, вітамінів, кетонових тіл, мікроелементів та ін.). Із різних органів кров виносить до нирок кінцеві продукти обміну – сечовину, сечову кислоту, білірубін, креатинін тощо. Звідси вони виділяються з організму;

3) регуляторна або гормоноїдна функція, пов'язана з утворенням у крові місцевих гормонів (гормоноїдів), що переносяться з місця виникнення до місця їх дії, тобто до клітин-мішеней;

4) терморегуляторна функція – обмін теплом між тканинами і ­кров'ю;

5) осмотична функція – підтримання осмотичного тиску в судинах;

6) захисна функція, зумовлена наявністю в крові антитіл та фагоцитарною функцією лейкоцитів;

7) детоксикаційна – знешкодження токсичних речовин, пов'язане з активним їх розщепленням за допомогою ферментів крові.

Основні компоненти цільної крові і плазми людини наведено в таблицях.

У крові розрізняють два види клітин – білі й червоні кров'яні тільця. Перші називаються білокрівцями, або лейкоцитами. Їх вміст в дорослих людей складає 4000-9000 клітин в 1 мкл крові.

Другий вид кров'яних тілець – це червонокрівці, або еритроцити, їх вміст у периферичній крові знаходиться в межах 4,5-5•1012. Крім того, в крові знаходяться ще так звані кров'яні пластинки, або тромбоцити. Розглянемо біохімічні особливості та призначення кожного з названих видів клітин.

Лейкоцити

Лейкоцити (білі кров'яні тільця) захищають організм від мікроорганізмів, вірусів та сторонніх речовин, тобто забезпечують імунний статус організму.

Лейкоцити ділять на дві групи – гранулоцити (зернисті) й агранулоцити (незернисті). До гранулоцитів відносять нейтрофіли, еозинофіли і базофіли, а в групу агранулоцитів входять моноцити і лімфоцити.

Нейтрофіли

Нейтрофіли складають 60-70 % від усіх лейкоцитів. Основне їх призначення – захист організму від мікроорганізмів і вірусів. У нейтрофілах є сегментоване ядро, ендоплазматичний ретикулум (слаборозвинений), який не містить рибосом, мало мітохондрій, добре розвинений апарат Гольджі та сотні різних гранул. Більші за розмі­ром гранули мають пероксидази і гідролази з оптимумом активності в кислому рН. Малим гранулам властиві лужна фосфатаза, лізоцим, лактоферин і білки катіонної природи.

Нейтрофіли утворюються із стовбурових клітин – мієлобластів кісткового мозку. Вони переходять у кровообіг, а звідси – в різні тканини. В тканинах нейтрофіли живуть до двох днів, а потім гинуть. Припускають, що із тканин вони переміщуються на поверхню слизових оболонок (зокрема шлунково-кишкового тракту), звідки виводяться з організму.

Базофіли

Базофіли складають 1-5 % від усіх лейкоцитів крові. Активно утворюються в кістковому мозку при алергії. Базофіли беруть участь в алергічних реакціях, у згортанні крові та внутрішньосудинному ліполізі. Мають апарат синтезу білка, який працює за рахунок енергії дихання. Вони синтезують медіатори алергічних реакцій – гістамін і серотонін, які при алергії викликають місцеве запалення. Гепарин, що утворюється в базофілах, запобігає згортанню крові та активує внутрішньосудинну ліпопротеїнліпазу, яка розщеплює триацилгліцерин.

Еозинофіли

На них припадає 3-6 % від усіх лейкоцитів. Еозинофіли, як і нейтрофіли захищають клітини від мікроорганізмів: містять мієлопероксидазу, лізосомальні гідролази.

Про відношення еозинофілів до алергічних реакцій свідчить зростання їх кількості при сенсибілізації організму, наприклад, за бронхіальної астми, гельмінтозів. Вони здатні нагромаджувати і розкладати гістамін, "розчиняти" тромби з участю профібринолізину та брадикінін-кінінази.

Моноцити

Утворюються в кістковому мозку. Вони складають 4-8 % від усіх лейкоцитів.

Період перебування моноцитів у крові становить 22 години, а далі спостерігається експоненціальне зниження їх вмісту, вони виходять у тканини і нагромаджуються при запаленні. За функцією їх називають макрофагами. Тканинні макрофаги походять від моноцитів крові. Залежно від місця знаходження їх називають: у печінці – ретикулоендотеліоцитами (купферовськими клітинами), в легенях – альвеолярними макрофагами, в проміжній речовині сполучної тканини – гістіоцитами тощо. Моноцит – клітина, що має ядро та інші субклітинні органели.

Лімфоцити

Вміст – 20-25 %, утворюються в лімфоїдній тканині або тимусі, відіграють важливу роль у формуванні гуморального і клітинного імуні­тету.

Лім­фоцити містять потужний апарат синтезу білків-імуноглобулінів, енергію одержують, здебільшого, за рахунок гліколізу, рідше – аеробним ­шляхом. Синтез імуноглобулінів відбувається при кооперативному функціонуванні декількох груп клітин, які утворюються в кістковому мозку. Клітини однієї групи – В-лімфоцити – залишають кістковий мозок і заселяють периферичну лімфоїдну тканину. Інша група клітин, покинувши кістковий мозок, потрапляє в тимус. Там вони перетворюються в Т-лімфоцити і через кров переносяться в лімфоїдну тканину.

Тромбоцити (кров'яні пластинки)

Вміст – менше 1 %, відіграють головну роль у процесі гемостазу. Утворюються внаслідок розпаду мегакаріоцитів у кістковому мозку. Тривалість їх життя – 7-9 днів. Не дивлячись на те, що тромбоцити не містять ядра, вони здатні виконувати практично всі функції клітини, крім синтезу ДНК. Саме через це їх іноді називають клітинами, що не зовсім правильно. У цитоплазмі тромбоцитів містяться мітохондрії і два типи гранул: 1) щільні, в яких знаходяться АДФ, АТФ, катехоламіни, серотонін; 2) альфа-гранули, вірогідно, лізосомальноі природи. Щільні гранули подібні на ендоплазматичний ретикулум, мають здатність до синтезу білків та часточок, що необхідні для виділення кальцію в середовище. Тромбоцити синтезують білки скоротливої системи: актин, міозин, тропонін, тропоміозин. Їх скоротливі властивості проявляються відразу після активації кров'яних пластинок з участю Са2+.

Еритроцити

У крові людини міститься 25 трлн. еритроцитів. Основну свою функцію – перенесення О2 і СО2 – вони виконують завдяки тому, що містять 34 % гемоглобіну, а на суху масу клітин – 95 %.

Загальний вміст гемоглобіну у крові дорівнює 130-160 г/л, і якщо б гемоглобін був просто розчинний у плазмі, то розчин був би надто в'язким і його важко було б проштовхнути через судини.

Утворюються еритроцити в червоному кістковому мозку із стовбурових клітин, які послідовно проходять стадії еритробластів, пронормо­бластів, нормобластів до зрілих еритроцитів – нормоцитів. У процесі еритропоезу клітини-попередники зменшуються в розмірах. Їх ядра у кінці процесу руйнуються і виштовхуються з клітин.

Гемоглобін

До складу білка гемоглобіну входять простий білок глобін та простетична група гем. Гем – це хелатний комплекс іона заліза і порфірину – циклічної сполуки, що містить 4 пірольні кільця, з'єднані метиленовими містками (рис. ).

У крові людей відкрито приблизно 300 варіантів гемоглобінів, які утворилися внаслідок мутацій генів. Величезна більшість таких гемоглобінів містить одиничну амінокислотну заміну в альфа- чи бета-ланцюзі. Рідше зустрічаються аномальні гемоглобіни з делеціями чи вставками амінокислот. Багато з варіантів гемоглобінів функціонують нормально і не викликають симптомів захворювання. Але в деяких випадках структурні аномалії так істотно порушують функції гемоглобіну, що спостерігаються клінічні ознаки захворювання.

Плазма крові містить 90-91 % води і 9-10 % сухого залишку, а саме 7‑8 % білка, приблизно 1 % різноманітних небілкових органічних речовин і 0,9% – неорганічних солей. У табл. 17.1, 17.2 наведені концентрації основних органічних і неорганічних компонентів плазми крові. У фізіологічних умовах вміст їх коливається в певних межах, які називаються "нормальними", чи "фізіологічними". Відносно постійний рівень основних компонентів крові підтримується за допомогою регуляторних систем (ЦНС, гормональна система). За багатьох патологічних процесів відзначаються більші чи менші зрушення в хімічному складі крові.

Питання 3.

Біохімія сечі

Біохімія сечі досліджується прицільно з потрібних параметрах, в залежності від підозр лікуючого лікаря. Концентрація речовин в сечі побічно свідчить про концентрацію в сироватці крові. Показники можуть змінюватися в залежності від дієти і ліків, що приймаються. Багато з них вимірюються в порції добової сечі.

Кількість сечі (діурез) у здорової людини становить 1000-2000 мл на добу. Добова кількість сечі, нижча 500 мл і вища 2000 мл, у дорослої людини вважається патологічною. У чоловіків діурез трохи більший, ніж у жінок, і складає в середньому 1500-2000 мл, у жінок – 1000-1600 мл. Добовий діурез може змінюватися залежно від характеру дієти, умов праці, температури навколишнього середовища тощо.

Вживання великої кількості води супроводжується збільшенням діурезу до 2000-3000 мл, і навпаки, обмежене споживання води призводить до зменшення діурезу до 700 мл і навіть менше. Вживання фруктів, ягід і овочів, багатих на воду, теж посилює діурез, а сухі продукти, особливо солоні, зменшують його. Зменшується кількість сечі також при роботі в гарячих цехах, в спеку, коли людина втрачає воду переважно з потом.

Збільшення діурезу (поліурія) спостерігається при багатьох захворюваннях, а також під час застосування різних сечогінних засобів. Багато сечі виділяється у хворих на цукровий і нецукровий діабет.

Зниження добової кількості сечі (олігурія) спостерігається при лихоманці, проносах, блюванні, гострих нефритах, серцевій недостатності та ін.

Повна зупинка виділення сечі (анурія) буває при отруєнні свинцем, арсеном, сильних стресах, сечокам'яній хворобі. Тривала анурія призводить до уремії. У нормі вдень виділяється сечі в 3-4 рази більше, ніж вночі. Але деякі патологічні стани (початки серцевої декомпенсації, цукрового діабету, хвороби нирок) проявляються переважанням нічного виділення сечі над денним. Такий стан називається ніктурією.

Колір сечі. Звичайно сеча має бурштиновий або солом'яно-жовтий колір.

Головним її пігментом є урохром, що утворюється з уробіліну або уробіліногену при взаємодії їх із деякими пептидами. На колір сечі впливають і інші пігменти, зокрема уроеритрин, що, вірогідно, є похідним меланіну; уропорфірини, рибофлавін та ін. При зберіганні, очевидно, в результаті окиснення уробіліногену, сеча темніє. Така ж сеча спостерігається при екскреції білірубіну, що має місце при обтураційних жовтяницях, а також жовтяницях печінкового походження.

Концентрована сеча, що виділяється в невеликій кількості й має високу густину, виразно жовтого забарвлення.

Бліда сеча має низьку густину і виділяється у великих кількостях.

При патологічних станах сеча може набувати різних кольорових відтінків. Так, червоний або рожево-червоний колір сечі буває при гематурії, гемоглобінурії, під час приймання амідопірину, сантоніну та інших лікарських середників. Висока концентрація уробіліну і білірубіну може надавати сечі бурого або червоно-бурого відтінку. Зелений або синій колір сечі спостерігається за умов гниття білків у кишечнику, яке зумовлює утворення індоксилсірчаних кислот. Останні, розкладаючись, утворюють індиго.

Прозорість. Свіжовипущена сеча є прозорою рідиною. Відстояна сеча мутніє у зв'язку з наявністю в ній муцинів та клітин епітелію слизової оболонки сечовивідних шляхів.

Помутніння сечі зумов­люється також кристаликами щавелевої кислоти (оксалатів) та сечової (уратів). При тривалому стоянні сечі випадають в осад переважно урати, які, адсорбуючи пігменти, зумовлюють її помутніння. У сечі з лужною реакцією випадають в осад фосфати кальцію і магнію. ­Лужний характер сечі, що відстоюється, спричиняється розкладом під впливом мікрофлори сечовини до аміаку. Останній робить сечу лужною, що призводить до випадання в осад названих солей і потемніння сечі. Сеча каламутніє і у хворих із запальними процесами сечовивідних проток, коли в сечу потрапляють гній, білок, клітини крові тощо.

Густина сечі залежить від концентрації розчинених речовин. Протягом доби густина сечі коливається в межах від 1,002 до 1,035 г/см3, що пов'язано з періодичним прийманням їжі, води і виділенням води з орга­нізму. За добу із сечею виділяється близько 60-65 г твердих речовин, зокрема приблизно 20 г мінерального залишку. За звичайних умов густина сечі в здорової людини в середньому дорівнює 1,012-1,020.

Реакція сечі. У нормі при змішаній їжі сеча кисла або слабо кисла (рН=5,3-6,8).

Найчастіше за норму приймають сечу з рН=6. Споживання переважно м'ясної їжі й взагалі білків надає сечі кислої реакції, при овочевій їжі вона стає лужною. Кисла реакція сечі зумовлюється, головним чином, однозаміщеними фосфатами. У лужній сечі переважають двозаміщені фосфати або бікарбонати калію чи натрію. Значне підвищення лужних речовин у крові супроводжується виділенням із сечею бікарбонатів, що підвищує рН сечі від 6,0 до 7,5-7,7.

Лужна реакція сечі відзначається у хворих на цистит і пієліт, що пов'язано з розкладом сечовини в сечовому міхурі й утворенням аміаку. Така ж реакція сечі буває після блювання, споживання лужних мінеральних вод тощо.

Виразно кисла реакція сечі має місце у хворих на цукровий діабет, при лихоманках та голодуванні.

Органічні речовини сечі

Білки.Здорова людина за добу виділяє із сечею до 30 мг білка, який звичайними лабораторними методами не виявляється. Як правило, із сечею виділяються низькомолекулярні білки плазми крові або інших тканин і органів. Серед білків можуть бути і ферменти, наприклад, пепсин, трипсин, підшлункова амілаза та ін. У сечу потрапляють і білки злущених клітин сечовивідних органів. Збільшення вмісту білків у сечі дозволяє їх відзначати звичайними лабораторними методами і свідчить про патоло­гічний стан. При цьому вміст білка в сечі збільшується переважно за рахунок білків плазми крові або клітин сечовивідних шляхів. Запальні процеси нирок (гломерулонефрити) супроводжуються підвищенням проникності базальних мембран клубочків нефрону, що призводить до посилення фільтрації білків і появи їх у сечі. При нефрозах порушується реабсорбція білків у канальцях, що зумовлює вихід білків у сечу. Хворі на гломерулонефрити та нефрози за добу можуть втрачати із сечею до 20-40 г білка.

Сечовина становить основну масу органічного залишку сечі. Азот сечовини складає 80-90 % усього азоту сечі. Доросла людина за добу виді­ляє із сечею 20-35 г сечовини. Зменшення концентрації сечовини спостерігається за умов обмеження білка в раціоні, порушення функції печінки, зокрема при переродженні печінки й отруєнні її фосфором. Кількість сечовини знижується також при ацидозі, оскільки значна частина NH3 використовується для нейтралізації кислот. Разом із тим, ураження нирок (нефрити) супроводжуються погіршенням виділення сечовини в сечу і нагромадженням її у крові. У таких випадках настає отруєння організму продуктами азотного обміну (уремія).

Низький вміст сечовини в сечі спостерігається в період інтенсивного росту організму і за умов вживання анаболітиків.

Переважне харчування білковою їжею, а також захворювання, що пов'язані з посиленим розпадом білків (цукровий діабет, злоякісні пухлини, деякі інфекційні хвороби, що супроводжуються лихоманкою), зумовлюють підвищення рівня сечовини в сечі.

Сечова кислота. За добу із сечею виводиться в середньому 0,6-1,0 г сечової кислоти. Вміст її в сечі може змінюватися залежно від ­характеру харчуван­­ня. Зменшення виділення сечової кислоти із сечею (до 0,3-0,5 г на добу) буває в людей, що харчуються переважно вуглеводною їжею, яка не містить пуринів.

М'ясні продукти, ікра, залозисті тканини, багаті на нуклеопротеїни, можуть служити причиною підвищення сечової кислоти в крові й сечі.

Підвищене виділення сечової кислоти є характерним для лейкозів, а також після прийняття аспірину, кортикостероїдів. Внаслідок слабкої розчинності сечової кислоти та її солей вони можуть випадати в осад у зібраній сечі, а також утворювати камінці в нижніх відділах сечовивідних шляхів. При багатьох захворюваннях, пов'язаних із порушенням обміну білків і нуклеїнових кислот, вміст сечової кислоти в крові й сечі може значно підвищуватися. Сюди відносяться насамперед ­подагра, опікова і променева хвороби. Виділяється сечова кислота у вигляді солей (уратів), найчастіше – у вигляді натрієвої солі.

Із сечею виділяються також проміжні продукти пуринового обміну (20-50 мг на добу): ксантин, гіпоксантин та інші. Застосування деяких лі­карських речовин (теобромін, кофеїн), а також споживання значної кіль­кості кави, какао, чаю призводять до появи в сечі метилпохідних пуринових основ.

Креатинін і креатин. У нормі із сечею доросла людина виділяє 1-2 г креатиніну за добу. Межі коливання залежать від стану мускулатури. Кількість виділеного креатиніну є сталою для кожної людини і віддзеркалює її м'язову масу. У чоловіків на кожний 1 кг маси тіла за добу виділяється із сечею від 18 до 32 мг креатиніну (креатиніновий коефіцієнт), а в жінок – від 10 до 25 мг. Креатиніновий коефіцієнт невеликий у повних і худорлявих людей, але високий в осіб із розвинутими м'язами.

Креатинурія має місце й у людей похилого віку як наслідок атро­­фії м'язів. Найбільший вміст креатину в сечі спостерігається при патоло­гіч­них станах м'язової системи, особливо при міопатії та м'язовій ди­строфії.

Амінокислоти. За добу здорова людина виділяє із сечею близько 2‑3,0 г амінокислот. Виділяються із сечею як вільні амінокислоти, так і амінокислоти, що входять до складу низькомолекулярних пептидів та парних сполук. У сечі виявлено 20 різних амінокислот та багато продуктів їх обміну. Вміст амінокислот у сечі зростає при різних патологічних станах, що супроводжуються розпадом тканинних білків – у хворих з травмами, при променевій і опіковій хворобі. Зростання концентрації амінокислот у сечі є свідченням порушення функції печінки і, зокрема, пригнічення утворення білків та сечовини.

Органічні кислоти. У сечі здорової людини завжди виявляють у незначних кількостях органічні кислоти: мурашину, оцтову, масляну, бета-оксимасляну, ацетооцтову та ін.

Серед інших органічних речовин у сечі наявні у невеликих кількостях ліпіди (холестерин, нейтральні жири та ін.).

Вітаміни. Із сечею виділяються майже всі вітаміни, що є в організмі людини. Найбільше в сечу потрапляють водорозчинні вітаміни. У добовій порції сечі здорової людини міститься в середньому 20-30 мг аскорбінової кислоти, 0,1-0,3 мг тіаміну, 0,5-0,8 мг рибофлавіну. У сечі є також продукти обміну вітамінів.

З'ясування вмісту вітаміну С в сечі дає уявлення про забезпеченість організму цим вітаміном. У клініці застосовують спосіб визначення кількості міліграмів вітаміну С, що екскретується із сечею за 1 годину. У практично здорових людей за 1 год виділяється 1 мг аскорбі­нової кислоти.

Гормони. У сечу завжди потрапляють гормони та продукти їх обміну. Вміст їх може змінюватися залежно від функціонального стану організму, зокрема печінки та ендокринних залоз.

Уробілін. Уробілін, точніше стеркобілін, завжди знаходиться в незначній кількості в сечі. Але у хворих на гемолітичну та печінкову жовтяниці вміст його значно зростає, що пов'язано з пригніченням функції печінки розкладати мезобіліноген (уробіліноген), який потрапляє з кишечника.

Призупинення надходження жовчі в кишечник внаслідок закупорки їх жовчовидільних шляхів викликає зникнення із сечі уробіліногену та появу в ній жовчного пігменту – білірубіну.

Білірубін. Сеча здорової людини містить незначну кількість білірубі­ну, яку звичайними лабораторними методами не виявляють. Поява білірубіну в сечі (білірубінурія) спостерігається при закупоренні жовчної протоки й ураженні паренхіми печінки. Якщо пошкоджується паренхіма ­печінки, то білірубін через зруйновані клітини потрапляє в кров. Підвищення концентрації прямого білірубіну в крові зумовлює появу його і в сечі. При білірубінурії сеча набуває кольору, подібного до темного пива, через ­деякий час вона стає жовто-зеленою внаслідок окиснення білірубіну в білівердин.

Глюкоза. Сеча здорової людини містить незначну кількість глюкози, яку звичайними лабораторними методами не виявляють. Підвищення кількості глюкози в сечі може спостерігатися тоді, коли вміст її в крові перевищує 8-9 мМ/л (нирковий поріг глюкози). Але в деяких випадках глюкозурія може виникати при нормальній концентрації глюкози в крові. Це так звана ниркова глюкозурія, яка є наслідком порушення зворотного всмоктування глюкози в ниркових канальцях.

Глюкозурія відзначається при цукровому і стероїдному діабеті, гіперфункції щитовидної залози, введенні кортикотропного гормону та в інших випадках. У хворих на цукровий діабет вміст глюкози в сечі може сягати 5-10 %.

Галактоза. Спостерігається в сечі дітей, які харчуються переважно молоком, за умов порушення процесів травлення або послаблення перетворення галактози в глюкозу в печінці. У немовлят галактозурія часто поєднується з лактозурією. Для визначення функціонального стану печінки в клініці іноді застосовують так звану галактозну пробу. Людині дають 40 ггалактози, після чого повторно визначають її вміст у сечі. У нормі після "галактозного навантаження" виділення галактози із сечею відбувається лише в перші дві години. Ящо глікогенсинтезуюча функція печінки послаблена, то галактозурія триває 3-4 години.

Фруктоза. Фруктоза рідко з'являється в сечі. Фруктозурія в помітних концентраціях буває й у здорових людей за умов споживання великої кількості фруктів, ягід, меду. У всіх інших випадках поява фруктози в сечі може бути результатом порушення печінкового метаболізму. Фруктозурія виникає при цукровому діабеті, запаленні печінки, деяких спадкових захворюваннях.

Пентози. Пентози виділяються із сечею після вживання великої кількості фруктів або фруктових соків. Багато пентоз є у вишнях, сливах і чорній смородині.

Пентозурія відзначається при таких захворюваннях, як цукровий і стероїдний діабет, деякі інтоксикації; існує і спадкова ідіопатична пентозурія. В останньому випадку через відсутність специфічної дегідрогенази ксилулоза не метаболізується і виділяється із сечею. Клінічно хвороба нічим себе не проявляє, але. оскільки проба на цукор в сечі позитивна, то цю пентозурію можна помилково сприйняти за цукровий діабет.

Кетонові тіла. В нормі добова сеча містить 20-50 мг кетонових тіл. Така кількість не виявляється методами, що застосовуються в клініках. Деякі патологічні стани, зокрема цукровий діабет, призводять до зростання концентрації кетонових тіл у сечі, кількість їх може сягати 20-50 г і більше. Кетонурія спостерігається також при голодуванні, надмірному вживанні жирів на тлі обмеження вуглеводів, різкому послабленні серцевої діяльності, що супроводжується пригніченням процесів дихання тощо.

Кров. Поява в сечі крові (гематурія) або гемоглобіну може бути ­наслідком ураження сечовивідних шляхів або нирок. Наприклад, під час проходження камінців або крововиливів у нирки. Коли в сечу потрапляє гемоглобін (а не цілі еритроцити), то це явище називається гемогло­бінурією.

Порфірини. У здорових людей сеча містить дуже малу кількість порфіринів І типу (до 300 мкг за добу).

Поява в сечі значної кількості порфіринів (порфіринурія) спостері­гається при деяких захворюваннях печінки, кишкових кровотечах, інтоксикаціях. Зокрема, порфіринурія є характерною ознакою отруєння свинцем. Виділення порфіринів із сечею зростає у хворих на злоякісну анемію та з ураженням печінки (в 10 і більше разів).

Питання для самостійної роботи:

1. Біохімічні процеси в нервовій та м’язовій тканинах у спортсменів при різних видах фізичного навантаження.

2. Білки крові, характеристика.

3. Гемоліз: причини, симптоми.

4. Гострий гемоліз.

5. Мінеральні речовини сечі.

Наши рекомендации