Чтобы результаты корреляционного анализа нашли практическое применение, должны выполняться определенные требования в отношении отбора объекта исследования и признаков - факторов.
1. однородность единиц, подвергающихся изучению методами корреляционного анализа;
2. оценка однородности исследуемой совокупности при помощи показателей вариации (коэффициентов вариации);
3. достаточное число наблюдений;
4. независимость друг от друга факторных признаков;
5. нормальный характер распределения исследуемых признаков;
6. количественное выражение факторных признаков, что дает возможность составить модель корреляционной зависимости.
Корреля́ция (корреляционная зависимость) — статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми).
26.
Свойства:
1. Коэффициенты корреляции способны характеризовать только линейные связи, т.е. такие, которые выражаются уравнением линейной функции. При наличии нелинейной зависимости между варьирующими признаками следует использовать другие показатели связи.
2. Значения коэффициентов корреляции – это отвлеченные числа, лежащее в пределах от -1 до +1, т.е. -1 < r < 1.
3. При независимом варьировании признаков, когда связь между ними отсутствует, r= 0.
4. При положительной, или прямой, связи, когда с увеличением значений одного признака возрастают значения другого, коэффициент корреляции приобретает положительный (+) знак и находится в пределах от 0 до +1, т.е. 0 < r < 1.
5. При отрицательной, или обратной, связи, когда с увеличением значений одного признака соответственно уменьшаются значения другого, коэффициент корреляции сопровождается отрицательным (–) знаком и находится в пределах от 0 до –1, т.е.-1 < r <0.
6. Чем сильнее связь между признаками, тем ближе величина коэффициента корреляции к |1|. Если r =+-1, то корреляционная связь переходит в функциональную, т.е. каждому значению признака Х будет соответствовать одно или несколько строго определенных значений признака Y.
7. Только по величине коэффициентов корреляции нельзя судить о достоверности корреляционной связи между признаками. Этот параметр зависит от числа степеней свободы k = n –2, где: n – число коррелируемых пар показателей Х и Y. Чем больше n, тем выше достоверность связи при одном и том же значении коэффициента корреляции.
27.
Фи́зика — область естествознания, наука, изучающая наиболее общие и фундаментальные закономерности, определяющие структуру и эволюцию материального мира. Более просто, физика — это наука о природе в самом общем смысле. Законы физики лежат в основе всего естествознания. Физика изучает вещество (материю) и энергию, а также фундаментальные взаимодействия природы, управляющие движением материи. Физические законы являются общими для всех материальных систем, поэтому физику можно называют «фундаментальной наукой».
Термин «физика» впервые появился в сочинениях Аристотеля. Первоначально термины «физика» и «философия» были синонимичны, поскольку обе дисциплины пытаются объяснить законы функционирования Вселенной. Однако в результате научной революции XVI века физика выделилась в отдельное научное направление.
В основе своей физика — экспериментальная наука: все её законы и теории основываются и опираются на опытные данные. Однако зачастую именно новые теории являются причиной проведения экспериментов и, как результат, лежат в основе новых открытий. Поэтому принято различать экспериментальную и теоретическую физику.
Экспериментальная физика исследует явления природы в заранее подготовленных условиях. В ее задачи входит обнаружение ранее неизвестных явлений, подтверждение или опровержение физических теорий. Именно несогласие с результатом эксперимента является критерием ошибочности физической теории, или более точно, неприменимости теории к нашему миру. Обратное утверждение не верно: согласие с экспериментом не может быть доказательством правильности (применимости) теории. То есть главным критерием жизнеспособности физической теории является проверка экспериментом. Эта очевидная сейчас роль эксперимента была осознана лишь Галилеем и более поздними исследователями, которые делали выводы о свойствах мира на основании наблюдений за поведением предметов в специальных условиях, то есть ставили эксперименты. Заметим, что это совершенно противоположно, например, подходу древних греков: источником истинного знания об устройстве мира им казалось лишь размышление, а «чувственный опыт» считался подверженным многочисленным обманам и неопределённостям, а потому не мог претендовать на истинное знание.
В задачи теоретической физики входит формулирование общих законов природы (физических теорий) и объяснение на основе этих законов различных явлений, а также предсказание до сих пор неизвестных явлений. Верность любой физической теории проверяется экспериментально: если результаты эксперимента совпадают с предсказаниями теории, она считается адекватной (достаточно точно описывающей данное явление). Теоретическая физика — способ познания природы, при котором тому или иному кругу природных явлений сопоставляется какая-либо математическая модель.
Продуктом теоретической физики являются физические теории. Поскольку теоретическая физика работает именно с математическими моделями, крайне важным требованием является математическая непротиворечивость завершенной физической теории. Вторым обязательным свойством (отличающим теоретическую физику от математики) является возможность получать внутри теории предсказания для поведения природы в тех или иных условиях (то есть предсказания для экспериментов) и, в тех случаях, где результат эксперимента уже известен, давать согласие с экспериментом. Это главные критерии построения физической теории.
28.
Физика - это основная область естествознания, наука о свойствах и строении материи, о формах ее движения и изменения, об общих закономерностях явлений Природы.
Нынешняя физика вполне равноценна давнишней натурфилософии, из которой возникло большинство современных наук. Одной из таких наук является астрономия, наука о происхождении, строении и законах движения космических тел. Астрономия старше физики. Фактически физика и возникла из нее, когда астрономия заметила поразительную простоту движения звезд и планет. Объяснение этой простоты и стало началом физики. На современном этапе развития астрономия и физика так сильно переплетаются, а их влияние друг на друга так огромно, что порой трудно отличить, где кончается астрономия и начинается физика.
С физикой тесно связана и химия. В свои младенческие годы химия почти целиком сводилась к тому, что мы сейчас называем неорганической химией, т.е. химии веществ, не связанных с живыми телами. Кропотливым трудом химиков (а также алхимиков) открывались новые и новые химические элементы, изучались их связи друг с другом и их соединения, анализировался состав почвы и минералов. Со временем возникла еще одна область химии - органическая химия, т.е. химия веществ, связанных с жизненными процессами. В настоящее время химия - это одна из основных областей естествознания, наука о строении, составе, свойствах и взаимном превращении веществ.
Неорганическая химия тесней всего, пожалуй, связана с геологией, т.е. наукой о Земле. Если быть более точным, то говорить нужно не об одной, а о нескольких науках о Земле. К ним относятся, например, минералогия, или наука о минералах Земли; метеорология, или наука о погоде; сейсмология, или наука о процессах, протекающих в толще земной коры (горообразование, землетрясения и т.п.), и другие науки.
Органическая химия неразрывно связана с биологией, наукой о строении и законах функционирования живых организмов, наукой о процессах, которые лежат в основе жизни. Строго говоря, биология - это тоже целая система наук. Сюда относится, например, зоология, изучающая животный мир; ботаника, изучающая мир растений; физиология, изучающая процессы, протекающие в живых организмах, в частности, в организме человека; психология, изучающая процессы, связанные с деятельностью сознания, и др.
Все естественные науки оказывают огромное взаимное влияние друг на друга, они всевзаимосвязаны. Больше того, само деление единой Природы на “предметы изучения” люди придумали только для того, чтобы облегчить себе жизнь. Оглянитесь вокруг, разве мы видим химию или физику? Конечно же, нет. Мы видим сложный и удивительно прекрасный мир, которому по большому счету все равно, что мы о нем знаем. Границы отдельных наук размыты, а на стыке различных наук возникают новые науки. Так на стыке химии и физики возникла физическая химия, на стыке физики и биологии - биофизика. Геофизика, геохимия, астрофизика,- все это только небольшое число так называемых смежных наук.
30.
Колебательные процессы, характеризующиеся повторяемостью во времени
параметров физических величин, которые определяют движение или состояние,
часто встречаются в окружающей среде. Свойства повторяемости имеют,
например, колебания маятника часов, струны или ножек камертона, корабля на
волнах, молекул в твердом теле и т.д. Такие движения совершают также некоторые
части технических приспособлений: поршни, клапаны, вращающиеся валы и др.
Универсальность законов колебательных процессов позволяет с одной точки
зрения трактовать разные по своей природе колебания, встречающиеся в
физических явлениях, механизмах и машинах.
Колебания, при которых состояние движения тела повторяется через равные
промежутки времени, называются периодическими.
Среди разнообразных колебательных движений отдельное место занимают
гармонические колебания. При таких колебаниях физические величины, описы-
вающие эти движения (например, отклонение от состояния равновесия, скорость,
ускорение и т.д.), изменяются с течением времени по закону косинуса или синуса.
Этот вид колебаний особенно важен потому, что в соответствии с учением о ко-
лебаниях любые периодические колебания, которые наблюдаются в природе и тех-
нике, можно представить как наложение нескольких гармонических колебательных
движений. Таким образом, гармонические колебания являются простейшим видом
колебательного движения
Уравнение:
31.Волновое движение .Уравнение волны. Плотность энергии волны.
Волны - это изменение состояния среды (возмущения), распространяющиеся в этой среде и несущие с собой энергию и импульс без переноса вещества. Наиболее часто встречающиеся виды волн — упругие (звук) и электромагнитные (свет, радиоволны и другие).
Примером волнового движения может быть возмущение воды от падающих капель, которое распространяется в виде расширяющихся концентрических кругов.
Волновое уравнение: A = A0 cos(ωt + kx)
A0 - амплитуда колебаний; ω - круговая частота (рад/с); период колебаний T (с), который связан с круговой частотой соотношением: T = 2π/ω;
Объемная плотность энергии волны в упругой среде (w), определяется следующим образом: