Скорость реакции в гетерогенных системах
Влияние температуры
Влияние температуры зависит от знака теплового эффекта реакции. При повышении температуры химическое равновесие смещается в направлении эндотермической реакции, при понижении температуры — в направлении экзотермической реакции. В общем же случае при изменении температуры химическое равновесие смещается в сторону процесса, знак изменения энтропии в котором совпадает со знаком изменения температуры. Зависимость константы равновесия от температуры в конденсированных системах описывается уравнением изобары Вант-Гоффа:
в системах с газовой фазой — уравнением изохоры Вант-Гоффа
В небольшом диапазоне температур в конденсированных системах связь константы равновесия с температурой выражается следующим уравнением:
Например, в реакции синтеза аммиака
N2 + 3H2 ⇄ 2NH3 + Q
тепловой эффект в стандартных условиях составляет +92 кДж/моль, реакция экзотермическая, поэтому повышение температуры приводит к смещению равновесия в сторону исходных веществ и уменьшению выхода продукта.
Влияние давления
Давление существенно влияет на положение равновесия в реакциях с участием газообразных веществ, сопровождающихся изменением объёма за счёт изменения количества вещества при переходе от исходных веществ к продуктам:
При повышении давления равновесие сдвигается в направлении, в котором уменьшается суммарное количество молей газов и наоборот.
В реакции синтеза аммиака количество газов уменьшается вдвое: N2 + 3H2 ↔ 2NH3
Значит, при повышении давления равновесие смещается в сторону образования NH3, о чем свидетельствуют следующие данные для реакции синтеза аммиака при 400 °C:
давление, МПа | 0,1 | |||||
объемная доля NH3, % | 0,4 |
Влияние инертных газов
Введение в реакционную смесь или образование в ходе реакции инертных газов действует так же, как и понижение давления, поскольку понижается парциальное давление реагирующих веществ. Следует отметить, что в данном случае в качестве инертного газа рассматривается газ, не участвующий в реакции. В системах с уменьшением количества молей газов инертные газы смещают равновесие в сторону исходных веществ, поэтому в производственных процессах, в которых могут образовываться или накапливаться инертные газы, требуется периодическая продувка газоводов.
Влияние концентрации
Влияние концентрации на состояние равновесия подчиняется следующим правилам:
- При повышении концентрации одного из исходных веществ равновесие сдвигается в направлении образования продуктов реакции;
- При повышении концентрации одного из продуктов реакции равновесие сдвигается в направлении образования исходных веществ.
СКОРОСТЬ РЕАКЦИИ В ГЕТЕРОГЕННЫХ СИСТЕМАХ
Гетерогенные реакции имеют большое значение в технике (горение твердого топлива, коррозия металлов и т.д.). Любые гетерогенные процессы связаны с переносом вещества, и в них можно выделить три стадии:
1) Подвод реагирующего вещества к поверхности.
2) Химическая реакция на поверхности.
3) Отвод продукта реакции от поверхности.
Первая и последняя стадия осуществляется за счет диффузии. Во многих случаях химическая реакция могла бы протекать очень быстро, если подвод реагирующего вещества к поверхности и отвод продуктов от нее тоже происходили бы достаточно быстро. Такие процессы называются диффузионно контролируемыми, т.к. скорость определяется скоростью переноса вещества (диффузией). Для ускорения таких реакций обычно используют перемешивание. Если химическая реакция (вторая стадия) имеет высокую энергию активации *, то эта стадия оказывается самой медленной, и процесс не ускоряется при перемешивании. Такие гетерогенные реакции называются кинетически контролируемыми. Для их ускорения необходимо повысить температуру.
Стадия, определяющая скорость протекания реакции, называется лимитирующей стадией. Для диффузионно контролируемых процессов такой стадией является перенос вещества (1-я или 3-я стадии), а кинетически контролируемые процессы лимитируются 2-й стадией.
Скорость любого гетерогенного процесса возрастает при увеличении поверхности контакта фаз. Для этого используют измельчение твердой фазы.
В уравнении закона действия масс для гетерогенной реакции концентрация твердой фазы не учитывается. Например, для горения углерода C(т) + O2(г) → CO2(г) выражение закона действия масс выглядит следующим образом:
v = k·[O2]
Разумеется, характеристики твердого вещества влияют на скорость реакции, но это влияние отражается величиной константы скорости k.
В 1865 году Н. Н. Бекетовым и в 1867 году Гульдбергом и Вааге был сформулирован закон действующих масс:
Скорость химической реакции в каждый момент времени пропорциональна концентрациям реагентов, возведенным в некоторые степени.
Для элементарных реакций показатель степени при значении концентрации каждого вещества часто равен его стехиометрическому коэффициенту, для сложных реакций это правило не соблюдается. Кроме концентрации на скорость химической реакции оказывают влияние следующие факторы:
- природа реагирующих веществ,
- наличие катализатора,
- температура (правило Вант-Гоффа),
- давление,
- площадь поверхности реагирующих веществ.
Если мы рассмотрим самую простую химическую реакцию A + B → C, то мы заметим, что мгновенная скорость химической реакции величина непостоянная.
Перейти к: навигация, поиск
Скорость химической реакции — изменение количества одного из реагирующих веществ за единицу времени в единице реакционного пространства. Является ключевым понятием химической кинетики. Скорость химической реакции — величина всегда положительная, поэтому, если она определяется по исходному веществу (концентрация которого убывает в процессе реакции), то полученное значение домножается на −1.
Например для реакции:
выражение для скорости будет выглядеть так:
.
При́нцип Па́ули (принцип запрета) — один из фундаментальных принципов квантовой механики, согласно которому два и более тождественных фермиона (частиц с полуцелым спином) не могут одновременно находиться в одном квантовом состоянии.
Принцип был сформулирован для электронов Вольфгангом Паули в 1925 г. в процессе работы над квантомеханической интерпретацией аномального эффекта Зеемана и в дальнейшем распространён на все частицы с полуцелым спином. Полное обобщённое доказательство принципа было сделано им в 1940 г. в рамках релятивистской квантовой механики: волновая функция системы фермионов является антисимметричной относительно их перестановок, поведение систем таких частиц описывается статистикой Ферми — Дирака.
Принцип Паули можно сформулировать следующим образом: в пределах одной квантовой системы в данном квантовом состоянии может находиться только одна частица, состояние другой должно отличаться хотя бы одним квантовым числом.
В статистической физике принцип Паули иногда формулируется в терминах чисел заполнения: в системе одинаковых частиц, описываемых антисимметричной волновой функцией, числа заполнения могут принимать лишь два значения