Проявления периодического закона в отношении энергии ионизации

Зависимость энергии ионизации атома от порядкового номера элемента носит отчетливо периодический характер. Легче всего удалить электрон из атомов щелочных металлов, включающих по одному валентному электрону, труднее всего — из атомов благородных газов, обладающих замкнутой электронной оболочкой. Поэтому периодичность изменения энергии ионизации атомов характеризуется минимумами, отвечающими щелочным металлам, и максимумами, приходящимися на благородные газы. Наряду с этими резко выраженными минимумами и максимумами на кривой энергии ионизации атомов наблюдаются слабо выраженные минимумы и максимумы, которые по-прежнему нетрудно объяснить с учетом упомянутых эффектов экранирования и проникновения, эффектов межэлектронных взаимодействий и т. д.

Проявления периодического закона в отношении энергии сродства к электрону

Периодичность значений энергий сродства атомов к электрону объясняется, естественно, теми же самыми факторами, которые уже были отмечены при обсуждении ионизационных потенциалов (см. определение энергии сродства к электрону).

  Li Be B C N O F Ne
Электронная конфигурация s1 s²p1 s²p² s²p³ s²p4 s²p5 s²p6
ε, эВ -0,59 0,19 -0,30 -1,27 0,21 -1,47 -3,45 0,22

Наибольшим сродством к электрону обладают p-элементы VII группы. Наименьшее сродство к электрону у атомов с конфигурацией s² (Be, Mg,Zn) и s²p6 (Ne, Ar) или с наполовину заполненными p-орбиталями (N, P, As)[11]:


Электроотрицательность (χ) — фундаментальное химическое свойство атома, количественная характеристика способности атома в молекуле смещать к себе общие электронные пары.

Современное понятие об электроотрицательности атомов было введено американским химиком Л. Полингом. Л. Полинг использовал понятие электроотрицательности для объяснения того факта, что энергия гетероатомной связи A—B (A, B — символы любых химических элементов) в общем случае больше среднего геометрического значения гомоатомных связей A—A и B—B.

В настоящее время для определения электроотрицательностей атомов существует много различных методов, результаты которых хорошо согласуются друг с другом, за исключением относительно небольших различий, и во всяком случае внутренне непротиворечивы.

Основные стехиометрические законы химии. Закон постоянства состава вещества, законы кратных отношений, закон эквивалентов. Эквивалент, фактор эквивалентности. 1.4. Законы стехиометрии

Основные законы стехиометрии, включающие законы количественных соотношений между реагирующими веществами с помощью уравнений химических реакций, вывод формул химических соединений, составляют раздел химии, называемый стехиометрией. Стехиометрия включает в себя законы Авогадро, постоянства состава, кратных отношений, Гей-Люссака, эквивалентов и сохранения массы.

В основу составления химических уравнений положен метод материального баланса, основанный на законе сохранения массы (М. В. Ломоносов, 1748, А. Лавуазье, 1789).

Закон сохранения массы веществ:

Масса реагирующих веществ равна массе продуктов реакции.

В химической реакции число взаимодействующих атомов остается неизменным, происходит только их перегруппировка с разрушением исходных веществ. Взаимодействие водорода и кислорода с образованием воды может быть записано с помощью уравнения химической реакции

  Проявления периодического закона в отношении энергии ионизации - student2.ru  

Коэффициенты перед формулами химических соединений называются стехиометрическими.

Закон постоянства состава (Ж. Пруст):

Наши рекомендации