Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи.

Молекула – наименьшая частица вещества, обладающая его химическими свойствами.

Согласно теории химической связи, устойчивому состоянию элемента соответствует структура с электронной формулой внешнего уровня s2p6 (аргон, криптон, радон, и другие).

При образовании химической связи атомы стремятся приобрести такую устойчивую структуру. При этом возможны три типа химической связи.

Ионная связь – осуществляется в результате электростатического взаимодействия противоположно заряженных ионов. При взаимодействии атомов металлических и неметаллических элементов (разность электроотрицательности больше 1,9) атомы металлических элементов отдают лишние электроны внешнего уровня, переходя в положительно заряженные ионы, а атомы неметаллических элементов принимают электроны, достраивая внешний уровень до восьми электронов, переходя в отрицательно заряженные ионы.

Например, 12Mg 1s22s22p63s2 -2e = 1s22s22p6

Mg -2e = Mg2+

8F 1s22s22p5 +e = 1s22s22p6

F +e = F-

Так как электрическое поле иона имеет сферическую симметрию, то при образовании связи между двумя противоположно заряженными ионами возможно электростатическое взаимодействие и с другими ионами. У ионных соединений определяющее значение имеют ненасыщенность и ненаправленность связи. Ионные соединения при обычных условиях являются кристаллическими веществами.

Металлическая связь. Осуществляется за счёт делокализованных электронов. При взаимодействии атомов только металлических элементов (в веществах называемых металлами) «лишние» электроны внешнего уровня способны перемещаться по металлу, но находятся в поле действия положительных ионов. Это взаимодействие подвижных ионов определяет, что соединения с металлической связью при обычных условиях являются кристаллами, которые имеют специфические свойства.

Ковалентная связьосуществляется за счёт электронной пары одновременно принадлежащей двум атомам.

Например:На внешнем уровне атома хлора 7 электронов

Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru

При взаимодействии с другим атомом хлора образуется устойчивая структура молекула Cl2, где у каждого атома на внешнем уровне 8 электронов.

Рассмотрим свойства ковалентной связи с точки зрения метода валентных связей(МВС). Основные положения МВС.

1. В образовании ковалентной связи принимают участие два электрона с противоположными спинами.

2. Образование ковалентной связи происходит за счёт перекрывания атомных орбиталей валентных электронов.

3. Связь образуется по линии максимального перекрывания атомных орбиталей.

Ковалентная связь характеризуется свойствами: насыщаемость, направленность и полярность.

Способность атома к образованию химических связей называют валентностью элемента. Количественной мерой валентности принято считать число электронов способных образовывать химические связи – число валентных электронов.

Для s – элементов валентными электронами является s – электроны внешнего уровня ;

Для р – элементов s- и р – электроны внешнего уровня ;

Для d – элементов s – электроны внешнего уровня и d – электроны предвнешнего уровня.

Например, 11Na – валентный электрон 3s1

56Ba - 6s2 13Al – 3s23p1 53J – 5s25p5 22Ti – 4s23d2

Большинство соединений с ковалентной связью образовано по обменномумеханизму, при котором каждый атом поставляет по одному (неспаренному) электрону для образования общей пары.

Насыщаемость – это свойство, которое определяет стехиометрический (определённый) состав устойчивого соединения с ковалентной связью – молекулы. Для соединений образованных по обменному механизму валентностьэлемента определяется числом неспаренных валентных электронов.

Например, элементы кислород и водород образуют молекулу состава Н2О.

Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
Для 8О валентные электроны 2s22p4, которые расположены по орбиталям 2

s p

У атома элемента кислорода имеется два неспаренных валентных электрона, т.е. валентность равна 2.

Для 1Н валентный электрон 1s1, т.е. валентность равна 1.

Однако большинство элементов могут иметь переменную валентность. Это возможно в том случае, если в пределах одного энергетического уровня имеются свободные орбитали.

Например, элемент углерод и кислород образуют СО и СО2

Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
Для 6С валентные электроны 2s22p2, которые расположены по орбиталям 2 , т.е. в основном состоянии валентность будет

s p

Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
равна 2. В возбуждённом состоянии электрон с s – подуровня поднимается на р – подуровень: 2s12p3 2 ,т.е. валентность будет равна 4.

s p

Исходя из свойств соединений СО и СО2 можно сделать вывод о том, что элемент в возбуждённом состоянии образует более устойчивое соединение.

Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru Направленность – это свойство определяющее геометрическую форму молекулы с ковалентной связью. При образовании связи принимают участие атомные орбитали различной формы:

Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru s – электроны имеют форму орбитали

 
  Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru

Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru р – электроны имеют форму орбитали

Однако, когда атом находится в возбуждённом состоянии в образовании равноценных связей участвуют s- и р– гибридные орбитали.

Различают три типа гибридизации:

1. Один s – электрон и один р – электрон : s р – гибридизация

Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
- -две гибридные связи

2. Один s – электрон и два р – электрона: s р2 – гибридизация

Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
- -три гибридные связи.

3. Один s – электрон и три р – электрона: s р3 – гибридизация

Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
- -четыре гибридные связи.

В зависимости от направления перекрывания атомных орбиталей различают: s - и π – связи.

s -связь возникает при перекрывании орбиталей вдоль оси, соединяющей ядра взаимодействующих атомов. s - связь наблюдается при перекрывании s – s –, р – р – s - р – орбиталей и т.д.

Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru

Рис. 3. Перекрывание электронных облаков

при образовании s - и p - связей

π – связь возникает при перекрывании орбиталей по обе стороны от оси соединяющей ядра атомов. Наблюдается при перекрывании р – р орбиталей расположенных перпендикулярно оси, соединяющей ядра атомов.

Полярность.

В зависимости от расположения общей электронной пары (электронной плотности) между ядрами атомов различают неполярную и полярную связь.

Неполярная связь образуется атомами элементов с одинаковой электроотрицательностью. Электронная плотность распределяется симметрично относительно ядер атомов.

Связь между атомами с различной электроотрицательностью называется полярной. Общая электронная пара смещена в сторону более электроотрицательного элемента. Центры тяжести положительных (б+) и отрицательных (б-) зарядов не совпадают. Чем больше разность электроотрицательности элементов образующих связь, тем выше полярность связи. При разности электроотрицательности меньше 1,9 связь считается полярной ковалентной.

Полярность молекулы.

Для двухатомной молекулы полярность молекулы совпадает с полярностью связи. В многоатомных молекулах общий дипольный момент молекулы равен векторной сумме моментов всех её связей. Вектор диполя направлен от + к –

Пример 3.Используя метод валентных связей, определите полярность молекул хлорида олова (II) и хлорида олова (IV).

50Sn относится к р – элементам.

Валентные электроны 5s25p2. Распределение электронов по квантовым ячейкам в нормальном состоянии:

Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
5 - валентность 2

s p

Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
и в возбуждённом состоянии: 5 - валентность 4

s p

Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru
17Cl – относится к р – элементам. Валентные электроны 3s23p5. Распределение электронов по квантовым ячейкам в нормальном состоянии: 3 - валентность 1.

s p

Химические формулы хлорида олова (IV) -SnCl4, хлорида олова (II) – SnCl2

Для построения геометрической формы молекул изобразим орбитали неспаренных валентных электронов с учётом их максимального перекрывания

Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru

Рис. 4. Геометрическая форма молекул SnCl2 и SnCl4

Электроотрицательность Sn – 1,8. Cl – 3,0. Связь Sn – Cl, полярная, ковалентная. Изобразим вектора дипольных моментов полярных связей.

Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи. - student2.ru

Рис. 5. Направление векторов дипольных моментов

в молекулах SnCl2 и SnCl4

SnCl2 – полярная молекула

SnCl4 – неполярная молекула.

Вещества в зависимости от температуры и давления могут существовать в газообразном, жидком и твёрдом агрегатном состоянии.

В газообразном состоянии вещества находятся в виде индивидуальных молекул.

В жидком состоянии в виде агрегатов, где молекулы связаны межмолекулярными силами Ван–дер–Ваальса или водородной связью. Причём, чем полярнее молекулы, тем прочнее связь и, как следствие, выше температура кипения жидкости.

В твёрдых телах структурные частицы связаны как внутримолекулярными, так и межмолекулярными связями. Классифицируют: ионные, металлические, атомные (ковалентные), молекулярные кристаллы и кристаллы со смешанными связями.

КОНТРОЛЬНЫЕ ЗАДАНИЯ

73. Почему элементы хлор и калий являются активными, а элемент аргон, находящийся между ними, относится к малоактивным?

74. Используя метод валентных связей, объяснить почему молекула воды (Н2О) является полярной, а молекула метана (СН4) неполярной?

75. Вещество оксид углерода (II) является активным веществом, а оксид углерода (IV) относят к малоактивным веществам. Объяснить, используя метод валентных связей.

76. Как изменяется прочность молекул азота и кислорода. Объяснить, используя метод валентных связей.

77. Почему свойства кристалла хлорида натрия (NaCl) отличаются от свойств кристалла натрия (Na)? Какой вид связи осуществляется в этих кристаллах?

78. Используя метод валентных связей, определить полярность молекул хлорида алюминия и сероводорода.

79. К какому типу гидроксидов относится гидроксид рубидия? Объяснить, используя метод валентных связей.

80. Температура кипения жидкого фтороводорода равна 19,50С, а жидкого хлороводорода (- 84,00С). Почему такая большая разница в температурах кипения?

81. Используя метод валентных связей, объяснить, почему четырёххлористый углерод (ССl4) является неполярным, а хлороформ (СНСl3) полярным веществом?

82. Как изменяется прочность связей в молекулах СН4 – SnH4? Объяснить, используя метод валентных соединений.

83. Какие возможные соединения образуют элементы: свинец и бром? Определить полярность этих связей.

84. Используя метод валентных связей, определить полярность молекул азота и бромид азота (III).

85. Температура кипения воды равна 1000С, а сероводорода (60,70С). Почему такая большая разница в температурах кипения?

86. Определить, в каком соединении более прочная связь бромид олова или бромид углерода? Определить полярность этих соединений.

87. Используя метод валентных связей, определить полярность молекул йодид галлия и йодид висмута.

88. Используя теорию химической связи объяснить, почему ксенон относится к благородным (малоактивным) элементам.

89. Указать вид гибридизации (sp, sp2, sp3) в соединениях: BeCl2, SiCl4. Изобразите геометрические формы молекул.

90. Изобразите пространственное расположение связей в молекулах: гидрид бора и гидрид фосфора (III). Определить полярность молекул.

Методические указания к контрольным заданиям по дисциплине «Химия» для студентов нехимических специальностей заочной формы обучения. Часть 1.

Составители: доцент, к.х.н. Обухов В.М.

ассистент Костарева Е.В.

Подписано к печати Бумага писч. № 1

Заказ № Уч. изд. л.

Формат 60/90/ 1/16. Усл. печ. л.

Отпечатано на RISO GR 3750 Тираж экз.

Издательство «Нефтегазовый университет»

Государственное образовательное учреждение профессионального высшего образования

«Тюменский государственный нефтегазовый университет»

625000,г. Тюмень, ул. Володарского, 38

Отдел оперативной полиграфии издательства «Нефтегазовый университет»

625000,г. Тюмень, ул. Володарского, 38

Наши рекомендации