Залежи полезных ископаемых в зависимости от строения и возврата участка земной коры и форм рельефа
7.10. Гидросфера
Гидросфера (от греч. hydro – вода и sphaira – шар) – водная оболочка Земли, представляющая собой совокупность океанов, морей и континентальных водных бассейнов – рек, озер, болот и др., подземных вод, ледников и снежных покровов.
Полагают, что водная оболочка Земли образовалась в раннем архее, то есть примерно 3800 млн лет назад. В этот период истории Земли на нашей планете установилась температура, при которой вода могла находиться в значительной мере в жидком агрегатном состоянии.
Вода как вещество обладает уникальными свойствами, к числу которых относятся следующие:
♦ способность к растворению очень многих веществ;
♦ высокая теплоемкость;
♦ нахождение в жидком состоянии в интервале температур от 0 до 100 °C;
♦ большая легкость воды в твердом состоянии (льда), нежели в жидком.
Уникальные свойства воды позволили ей играть важную роль в эволюционных процессах, происходящих в поверхностных слоях земной коры, в круговороте вещества в природе и являться условием возникновения и развития жизни на Земле. Вода начинает выполнять свои геологические и биологические функции в истории Земли после возникновения гидросферы.
Гидросферу составляют поверхностные воды и подземные воды. Поверхностные воды гидросферы покрывают 70,8 % земной поверхности. Их суммарный объем достигает 1370,3 млн км3, что составляет 1/800 общего объема планеты, а масса оценивается в 1,4 ч 1018 т. К числу поверхностных вод, то есть вод, покрывающих сушу, относят Мировой океан, континентальные водные бассейны и материковые льды.
Мировой океан включает в себя все моря и океаны Земли.
Моря и океаны покрывают 3/4 поверхности суши, или 361,1 млн км2. В Мировом океане сосредоточена основная масса поверхностных вод – 98 %. Мировой океан условно разделен на четыре океана: Атлантический, Тихий, Индийский и Северный Ледовитый. Полагают, что современный уровень океана установился около 7000 лет назад. По данным геологических исследований, колебания уровня океана за последние 200 млн лет не превышали 100 м.
Вода в Мировом океане соленая. Среднее содержание солей составляет около 3,5 % по массе, или 35 г/л. Их качественный состав следующий: из катионов преобладают Na+,Mg2+,K+,Ca2+, из анионов – Cl-,SO42-,Br-,CO32-,F-. Считается, что солевой состав Мирового океана остается постоянным с палеозойской эры – времени начала развития жизни на суше, то есть примерно в течение 400 млн лет.
Континентальные водные бассейны представляют собой реки, озера, болота, водохранилища. Их воды составляют 0,35 % от общей массы поверхностных вод гидросферы. Некоторые континентальные водоемы – озера – содержат соленую воду. Эти озера имеют либо вулканическое происхождение, либо представляют собой изолированные остатки древних морей, либо образованы в районе мощных отложений растворимых солей. Однако в основном континентальные водоемы пресные.
Пресная вода открытых водоемов также содержит растворимые соли, но в небольшом количестве. В зависимости от содержания растворенных солей пресную воду разделяют на мягкую и жесткую. Чем меньше в воде растворено солей, тем она мягче. Самая жесткая пресная вода содержит солей не более 0,005 % по массе, или 0,5 г/л.
Материковые льды составляют 1,65 % от общей массы поверхностных вод гидросферы, 99 % льда находится в Антарктиде и Гренландии. Общая масса снега и льда на Земле оценивается в 0,0004 % массы нашей планеты. Этого достаточно для того, чтобы покрыть всю поверхность планеты слоем льда толщиной 53 м. Согласно расчетам, если эта масса растает, то уровень океана поднимется на 64 м.
Химический состав поверхностных вод гидросферы приблизительно равен среднему составу морской воды. Из химических элементов по массе преобладают кислород (85,8 %) и водород (10,7 %). Поверхностные воды содержат значительное количество хлора (1,9 %) и натрия (1,1 %). Отмечается существенно более высокое, чем в земной коре, содержание серы и брома.
Подземные воды гидросферы содержат основной запас пресной воды. Предполагают, что суммарный объем подземных вод примерно 28,5 млрдкм3. Это почти в 15 раз больше, чем в Мировом океане. Считают, что именно подземные воды являются основным резервуаром, пополняющим все поверхностные водоемы. Подземная гидросфера может быть разделена на пять зон.
Криозона. Область льдов. Зона охватывает полярные районы. Толщина ее оценивается в пределах 1 км.
Зона жидкой воды. Охватывает практически всю земную кору.
Зона парообразной воды ограничивается глубиной до 160 км. Полагают, что вода в этой зоне имеет температуру от 450 °Cдо700 °C и находится под давлением до 5 ГПа.[5]
Ниже, на глубинах до 270 км, располагается зона мономерных молекул воды. Она охватывает слои воды с диапазоном температур от 700 °C до 1000 °C и давлением до 10 ГПа.
Зона плотной воды простирается, предположительно, до глубин в 3000 км и опоясывает всю мантию Земли. Температуру воды в этой зоне оценивают в промежутке от 1000° до 4000 °C, а давление – до 120 ГПа. Вода при таких условиях полностью ионизирована.
Гидросфера Земли выполняет важные функции: она регулирует температуру планеты, обеспечивает круговорот веществ, является составной частью биосферы.
Непосредственное воздействие на регуляцию температуры поверхностных слоев Земли гидросфера оказывает благодаря одному из важных свойств воды – большой теплоемкости. По этой причине поверхностные воды аккумулируют солнечную энергию, а затем медленно ее отдают в окружающее пространство. Выравнивание температуры на поверхности Земли происходит исключительно благодаря круговороту воды. Кроме того, снег и лед имеют очень высокую отражающую способность: она превышает среднюю для земной поверхности на 30 %. Поэтому на полюсах разность между поглощенной и излученной энергией всегда отрицательна, то есть поглощенная поверхностью энергия меньше испущенной. Так происходит терморегуляция планеты.
Обеспечение круговорота веществ – другая важнейшая функция гидросферы.
Гидросфера находится в постоянном взаимодействии с атмосферой, земной корой и биосферой. Вода гидросферы растворяет в себе воздух, концентрируя при этом кислород, используемый в дальнейшем водными живыми организмами. Находящийся в воздухе углекислый газ, образующийся преимущественно в результате дыхания живых организмов, сжигания топлива и извержения вулканов, обладает высокой растворимостью в воде и аккумулируется в гидросфере. Гидросфера растворяет в себе также тяжелые инертные газы – ксенон и криптон, содержание которых в воде выше, чем в воздухе.
Воды гидросферы, испаряясь, поступают в атмосферу и выпадают в виде осадков, которые проникают в горные породы, разрушая их. Так вода участвует в процессах выветривания горных пород. Обломки горных пород сносятся текучими водами в реки, а затем в моря и океаны или в замкнутые континентальные водоемы и постепенно отлагаются на дне. Эти отложения впоследствии превращаются в осадочные горные породы.
Полагают, что главные катионы морской воды – катионы натрия, магния, калия, кальция – образовались в результате выветривания горных пород и последующего выноса продуктов выветривания реками в море. Важнейшие анионы морской воды – анионы хлора, брома, фтора, сульфат-ион и карбонат-ион, вероятно, происходят из атмосферы и связаны с вулканической деятельностью.
Часть растворимых солей систематически выводится из состава гидросферы посредством их осаждения. Например, при взаимодействии растворенных в воде карбонат-ионов с катионами кальция и магния образуются нерастворимые соли, которые опускаются на дно в виде карбонатных осадочных горных пород. В осаждении некоторых солей большую роль играют организмы, населяющие гидросферу. Они извлекают из морской воды отдельные катионы и анионы, концентрируя их в своих скелетах и раковинах в виде карбонатов, силикатов, фосфатов и других соединений. После смерти организмов их твердые оболочки накапливаются на морском дне и образуют мощные толщи известняков, фосфоритов и различных кремнистых пород. Подавляющая часть осадочных горных пород и такие ценные полезные ископаемые, как нефть, уголь, бокситы, разнообразные соли и т. д., образовались в прошлые геологические периоды в различных водоемах гидросферы. Установлено, что даже самые древние горные породы, абсолютный возраст которых достигает около 1,8 млрд лет, представляют собой сильно изменившиеся осадки, образованные в водной среде. Вода используется также в процессе фотосинтеза, в результате которого образуется органическое вещество и кислород.
В гидросфере примерно около 3500 млн лет назад зародилась жизнь на Земле. Эволюция организмов продолжалась исключительно в водной среде вплоть до начала палеозойской эры, когда примерно 400 млн лет назад началось постепенное переселение животных и растительных организмов на сушу. В этой связи гидросферу рассматривают как компонент биосферы (биосфера – сфера жизни, область обитания живых организмов).
Живые организмы распространены в гидросфере крайне неравномерно. Количество и многообразие живых организмов в отдельных участках поверхностных вод определяется многими причинами, в том числе комплексом факторов внешней среды: температурой, соленостью воды, освещенностью, давлением. С увеличением глубины ограничивающее действие освещенности и давления возрастает: количество поступающего света резко уменьшается, а давление, наоборот, становится очень высоким. Так, в морях и океанах заселены в основном литоральные зоны, то есть зоны не глубже 200 м, наиболее прогреваемые солнечными лучами.
Характеризуя функции гидросферы на нашей планете, В. И. Вернадский отмечал: «Вода определяет и создает всю биосферу. Она создает основные черты земной коры, вплоть до магматической оболочки».
7.11. Атмосфера
Атмосфера (от греч. atmos – пар, испарение и sphaira – шар) – оболочка Земли, состоящая из воздуха.
В состав воздуха входит ряд газов и взвешенные в них частицы твердых и жидких примесей – аэрозолей. Масса атмосферы оценивается в 5,157 × 1015 т. Столб воздуха оказывает давление на поверхность Земли: среднее атмосферное давление на уровне моря – 1013,25 гПа, или 760 мм рт. ст. Давление величиной 760 мм рт. ст. приравнено к внесистемной единице давления – 1 атмосфере (1 атм.). Средняя температура воздуха у поверхности Земли – 15 °C, при этом температура изменяется примерно от 57 °C в субтропических пустынях до -89 °C в Антарктиде.
Атмосфера неоднородна. Различают следующие слои атмосферы: тропосферу, стратосферу, мезосферу, термосферу и экзосферу, которые отличаются по особенностям распределения температуры, плотности воздуха и некоторым другим параметрам. Участки атмосферы, занимающие промежуточное положение между этими слоями, соответственно называют тропопаузой, стратопаузой и мезопаузой.
Тропосфера – нижний слой атмосферы высотой от 8-10 км в полярных широтах и до 16–18 км в тропиках. Тропосфера характеризуется падением температуры воздуха с высотой—с удалением от поверхности Земли на каждый километр температура уменьшается примерно на 6 °C. Плотность воздуха быстро убывает. В тропосфере сосредоточено около 80 % всей массы атмосферы.
Стратосфера располагается на высотах в среднем от 10–15 км до 50–55 км от поверхности Земли. Стратосфера характеризуется повышением температуры с высотой. Возрастание температуры происходит по причине поглощения озоном, находящимся в этом слое атмосферы, коротковолновой радиации Солнца, прежде всего УФ (ультрафиолетовых) лучей. При этом в нижней части стратосферы до уровня около 20 км температура мало меняется с высотой и может даже незначительно уменьшаться. Выше температура начинает возрастать – сначала медленно, а с уровня 34–36 км намного быстрее. В верхней части стратосферы на высоте 50–55 км температура достигает 260270 К.
Мезосфера – слой атмосферы, расположенный на высотах 55–85 км. В мезосфере температура воздуха с увеличением высоты уменьшается – примерно с 270 К на нижней границе до 200 К на верхней границе.
Термосфера простирается на высотах примерно от 85 км до 250 км от поверхности Земли и характеризуется быстрым повышением температуры воздуха, достигающей на высоте 250 км 800-1200 К. Повышение температуры происходит вследствие поглощения этим слоем атмосферы корпускулярной и рентгеновской радиации Солнца; здесь тормозятся и сгорают метеоры. Таким образом, термосфера выполняет функцию защитного слоя Земли.
Выше тропосферы находится экзосфера, верхняя граница которой условна и отмечается высотой примерно 1000 км над поверхностью Земли. Из экзосферы атмосферные газы рассеиваются в мировое пространство. Так происходит постепенный переход от атмосферы к межпланетному пространству.
Атмосферный воздух вблизи поверхности Земли состоит из различных газов, преимущественно из азота (78,1 % по объему) и кислорода (20,9 % по объему). В состав воздуха в небольшом количестве также входят следующие газы: аргон, углекислый газ, гелий, озон, радон, водяной пар. Кроме того, воздух может содержать различные переменные компоненты: оксиды азота, аммиак и др.
Помимо газов в состав воздуха входит атмосферный аэрозолъ, который представляет собой взвешенные в воздухе очень мелкие твердые и жидкие частицы. Аэрозоль образуется в процессе жизнедеятельности организмов, хозяйственной деятельности человека, вулканических извержений, подъема пыли с поверхности планеты и из космической пыли, попадающей в верхние слои атмосферы.
Состав атмосферного воздуха до высоты порядка 100 км в целом постоянен во времени и однороден в разных районах Земли. При этом содержание переменных газообразных компонентов и аэрозолей неодинаково. Выше 100–110 км происходит частичный распад молекул кислорода, углекислого газа и воды. На высоте около 1000 км начинают преобладать легкие газы – гелий и водород, а еще выше атмосфера Земли постепенно переходит в межпланетный газ.
Водяной пар – важная составная часть воздуха. Он поступает в атмосферу при испарении с поверхности воды и влажной почвы, а также путем транспирации растениями. Относительное содержание водяного пара в воздухе меняется у земной поверхности от 2,6 % в тропиках до 0,2 % в полярных широтах. С удалением от поверхности Земли количество водяного пара в атмосферном воздухе быстро падает, и уже на высоте 1,5–2 км убывает наполовину. В тропосфере ввиду понижения температуры водяной пар конденсируется. При конденсации водяного пара образуются облака, из которых выпадают атмосферные осадки в виде дождя, снега, града. Количество осадков, выпавших на Землю, равно количеству испарившейся с поверхности Земли воды. Избыток водяного пара над океанами переносится на континенты воздушными потоками. Количество водяного пара, переносимого в атмосфере с океана на континенты, равно объему стока рек, впадающих в океаны.
Озон сосредоточен на 90 % в стратосфере, остальная его часть находится в тропосфере. Озон поглощает УФ-радиацию Солнца, которая негативно воздействует на живые организмы. Районы с пониженным содержанием озона в атмосфере называют озоновыми дырами.
Наибольшие колебания толщины озонового слоя наблюдаются в высоких широтах, поэтому вероятность возникновения озоновых дыр в районах, близких к полюсам, выше, чем у экватора.
Углекислый газ поступает в атмосферу в значительном количестве. Он постоянно выделяется в результате дыхания организмов, горения, извержения вулканов и других процессов, происходящих на Земле. Однако содержание углекислого газа в воздухе мало, поскольку основная его масса растворяется в водах гидросферы. Тем не менее отмечается, что за последние 200 лет содержание углекислого газа в атмосфере увеличилось на 35 %. Причина такого существенного увеличения – активная хозяйственная деятельность человека.
Главным источником тепла для атмосферы является поверхность Земли. Атмосферный воздух достаточно хорошо пропускает к земной поверхности солнечные лучи. Поступающая на Землю солнечная радиация частично поглощается атмосферой – главным образом, водяным паром и озоном, но подавляющая ее часть достигает земной поверхности.
Суммарная солнечная радиация, достигающая поверхности Земли, частично отражается от нее. Величина отражения зависит от отражающей способности конкретного участка земной поверхности, так называемого альбедо. Среднее альбедо Земли – около 30 %, при этом разница между величиной альбедо от 7–9 % для чернозема до 90 % для свеже-выпавшего снега. Нагреваясь, земная поверхность выделяет тепловые лучи в атмосферу и нагревает ее нижние слои. Помимо основного источника тепловой энергии атмосферы – теплоты земной поверхности, тепло в атмосферу поступает в результате конденсации водяного пара, а также путем поглощения прямой солнечной радиации.
Неодинаковый разогрев атмосферы в разных областях Земли вызывает неодинаковое распределение давления, что приводит к перемещению воздушных масс вдоль поверхности Земли. Воздушные массы перемещаются из областей с высоким давлением в области с низким давлением. Такое движение воздушных масс называют ветром. При определенных условиях скорость ветра может быть очень большой, до 30 м/с и более (более 30 м/с – уже ураган).
Состояние нижнего слоя атмосферы в данном месте и в данное время называют погодой. Погода характеризуется температурой воздуха, осадками, силой и направлением ветра, облачностью, влажностью воздуха и атмосферным давлением. Погода определяется условиями циркуляции атмосферы и географическим положением местности. Она наиболее устойчива в тропиках и наиболее изменчива в средних и высоких широтах. Характер погоды, ее сезонная динамика зависят от климата на данной территории.
Под климатом понимаются наиболее часто повторяющиеся для данной местности особенности погоды, сохраняющиеся на протяжении длительного времени. Это усредненные за 100 лет характеристики – температура, давление, количество осадков и др. Понятие климата (от греч. klima – наклон) возникло еще в Древней Греции. Уже тогда понимали, что погодные условия зависят от угла, под которым солнечные лучи падают на поверхность Земли. Ведущим условием установления определенного климата на данной территории является количество энергии, приходящейся на единицу площади. Оно зависит от суммарной солнечной радиации, падающей на земную поверхность, и от альбедо этой поверхности. Так, в районе экватора и у полюсов температура мало меняется в течение года, а в субтропических областях и в средних широтах годовая амплитуда температур может достигать 65 °C. Основными климатообразующими процессами являются теплообмен, влагообмен и циркуляция атмосферы. Все эти процессы имеют один источник энергии – Солнце.
Атмосфера является непременным условием для всех форм жизни. Наибольшее значение для жизнедеятельности организмов имеют следующие газы, входящие в состав воздуха: кислород, азот, водяной пар, углекислый газ, озон. Кислород необходим для дыхания подавляющему большинству живых организмов. Азот, усваиваемый из воздуха некоторыми микроорганизмами, необходим для минерального питания растений. Водяной пар, конденсируясь и выпадая в виде осадков, является источником воды на суше. Углекислый газ – исходное вещество для процесса фотосинтеза. Озон поглощает вредное для организмов жесткое УФ-излучение.
Предполагают, что современная атмосфера имеет вторичное происхождение: она образовалась после завершения образования планеты около 4,5 млрд лет назад из газов, выделяемых твердыми оболочками Земли. В течение геологической истории Земли атмосфера под влиянием различных факторов претерпевала значительные изменения своего состава.
Развитие атмосферы зависит от геологических и геохимических процессов, происходящих на Земле. После возникновения жизни на нашей планете, то есть примерно 3,5 млрд лет назад, на развитие атмосферы начали оказывать существенное влияние и живые организмы. Значительная часть газов – азот, углекислый газ, водяной пар – возникла в результате извержения вулканов. Кислород появился около 2 млрд лет назад как результат деятельности фотосинтезирующих организмов, первоначально зародившихся в поверхностных водах океана.
В течение последнего времени происходят заметные изменения в атмосфере, связанные с активной хозяйственной деятельностью человека. Так, согласно наблюдениям, за последние 200 лет произошел существенный рост концентрации парниковых газов: содержание углекислого газа возросло в 1,35 раза, метана – в 2,5 раза. Значительно увеличилось содержание многих других переменных компонентов в составе воздуха.
Происходящие изменения состояния атмосферы – увеличение концентрации парниковых газов, озоновые дыры, загрязнение воздуха – представляют собой глобальные экологические проблемы современности.
7.12. Общие представления о географической оболочке
В. В. Докучаев, открывший закон географической зональности, отмечал, что в природе гармонично взаимодействуют друг с другом шесть природных компонентов: земная кора литосферы, воздух атмосферы, вода гидросферы, растительный и животный мир биосферы, а также почва постоянно обмениваются между собой веществом и энергией.
Обмен веществом происходит постоянно, и примеров таких можно привести множество:
♦ вода растворяет минералы и горные породы;
♦ вода гидросферы является частью живых организмов биосферы;
♦ вода в виде пара постоянно присутствует в нижнем слое атмосферы Земли;
♦ минералы и горные породы литосферы всегда находятся в живых организмах, в атмосфере (пыль, песок), в воде;
♦ углекислый газ воздуха растворяется в воде;
♦ организмы биосферы – растения – усваивают углекислый газ, выделяя кислород;
♦ накапливаясь на дне океанов, останки организмов биосферы образуют толщи осадочных пород литосферы;
♦ кислород в атмосфере и гидросфере является главным источником жизни организмов биосферы.
Все процессы на Земле происходят благодаря энергии Солнца и внутренней энергии Земли. В каждом из приведенных выше примеров предполагается и обмен энергией. Так, энергия растений биосферы, потребляемая животными, создает энергию животного мира. Вечные льды гидросферы охлаждают атмосферу и гидросферу. Благодаря этим процессам в природном комплексе сохраняется определенное равновесие между всеми природными компонентами. Благодаря этим процессам природа имеет удивительную способность к самовосстановлению, самоочищению, саморегуляции. Если в природном комплексе меняется один какой-нибудь компонент, то все другие меняются тоже, при этом стараясь восстановить свое равновесие. Стремление к самовосстановлению – одно из главных свойств природы.
► Географическая оболочка – это целостная и непрерывная оболочка Земли, среда деятельности человека, в пределах которой соприкасаются, взаимно проникают друг в друга и взаимодействуют нижние слои атмосферы, поверхностные толщи литосферы, вся гидросфера и биосфера. Между этими частями происходит непрерывный обмен веществом и энергией. Таким образом, географическая оболочка – это планетарный, охватывающий всю поверхность Земли, природный комплекс.
Суммарная толщина географической оболочки – несколько десятков километров. Основным источником процессов, происходящих в географической оболочке, служит энергия Солнца. Ее неравномерное поступление и распределение по шарообразной поверхности Земли приводит к огромной пространственной дифференциации природных условий в географической оболочке, в результате чего ее можно разделить на более мелкие природные комплексы, среди которых есть сходные (однородные) и совершенно различные.
Наиболее крупные зональные подразделения географической оболочки – географические (природные) пояса Земли, протягивающиеся в широтном или субширотном направлении. Они совпадают с климатическими поясами и имеют те же названия, так как выделяются по температурным условиям и преобладающим воздушным массам.
Однако природные комплексы географических поясов также неоднородны. Наиболее значительные изменения в природных условиях вызваны делением поверхности Земли на материки и океаны. Различное сочетание тепла и влаги в прибрежных и внутренних частях материков является причиной образования в географических поясахприродных зон– природных комплексов менее крупных размеров, которые в свою очередь можно подразделить на подзоны и другие более мелкие природные комплексы, например ландшафты.
Ландшафт(от нем. Land – земля и schaft – взаимосвязанный) – природный географический комплекс, в котором все основные компоненты (рельеф, климат, воды, почвы, растительность и живой мир) находятся в сложном взаимдействии и взаимообусловленности, образуя единую неразрывную систему. Многими учеными ландшафт рассматривается в качестве основной единицы в иерархии природно-территориальных комплексов.
Особенности различных ландшафтов формируются под воздействием как зональных, так и азональных факторов. К зональным относят климат, воду, почвы, растительный и животный мир; к азональным – рельеф, геологическое строение, горные породы.
Еще одно важное положение в современных концепциях географии занимает понятие географическая среда, которая возникла в результате длительной эволюции географической оболочки под влиянием антропогенного воздействия, создания так называемой «вторичной природы», то есть городов, заводов, каналов, транспортных магистралей и др.
► Географическая срела – это часть природы Земли, с которой человеческое общество непосредственно взаимодействует в своей жизни и производственной деятельности на данном этапе исторического развития.
В последнее время наряду с понятием о географической среде в научный обиход вошло также понятие об окружающей природной среде (или окружающей среде).
Окружающая среда – необходимое условие жизни и деятельности общества. Она служит средой его обитания, важнейшим источником ресурсов, оказывает большое влияние на духовный мир людей.
Природное окружение всегда было источником существования человека. Однако взаимодействие человека и природы менялось в разные исторические эпохи.
Два миллиона лет назад первобытные люди все необходимое для жизни находили в природном окружении, занимаясь охотой и собирательством: люди охотились на животных и птиц, ловили рыбу, выкапывали корни и луковицы растений, собирали ягоды, грибы, личинки насекомых, опустошали птичьи гнезда, забирали мед у пчел, вылавливали моллюсков и ракообразных на морском побережье, кочуя в поисках пищи с места на место. Некоторые индийские племена Северной и Южной Америки, бушмены Африки, аборигены Австралии до сих пор живут собирательством.
Появление и развитие земледелия 7 тыс. лет назад положило начало массовой вырубке лесов на Земле. По оценкам ученых, к моменту появления человека на Земле леса занимали 60 % ее поверхности, а сейчас – только 30 %. В настоящее время нетронутые человеком леса сохранились в тайге России, Канады, а также в тропических лесах Амазонии. В наибольшей степени леса сведены в Евразии и Северной Америке. По мере расширения пахотных земель и пастбищ быстрыми темпами вырубаются тропические леса Африки, Юго-Восточной Азии, Амазонии. Древесина повсеместно используется в качестве дешевого топлива.
Пастбищные земли наиболее сильно подвержены опустыниванию. Этот процесс характерен для всех материков Земли. По оценкам специалистов, человек радикально изменил и освоил 56 % территории суши, причем это наиболее благоприятные для жизни районы. Природу некоторых географических зон Земли можно наблюдать только в заповедниках. К ним относятся в первую очередь североамериканские прерии и европейские степи. Они полностью освоены человеком.
Ученые-географы предложили классифицировать географические зоны по степени их преобразования человеком; неизмененные (арктические пустыни), слабо измененные (тундра, лесотундра, северная тайга, полупустыни и пустыни), сильно измененные (смешанные и широколиственные леса, южная тайга), преобразованные (лесостепи, степи).
В ландшафтоведении, в зависимости от степени антропогенного воздействия, выделяют первичные природные ландшафты, которые образованы действием лишь природных факторов; природно-антропогенные ландшафты, которые образованы действием как природных, так и антропогенных факторов; и антропогенные ландшафты, существование которых поддерживается лишь за счет деятельности людей.
Вопросы для самопроверки
1. Чему равен радиус Земли? Насколько экваториальный радиус Земли длиннее полярного?
2. Как называется оболочка Земли, состоящая из земной коры и верхней части мантии?
3. Назовите три слоя, составляющие материковую земную кору.
4. Назовите древние платформы, лежащие в основании материков Африка, Северная Америка, Южная Америка.
5. Дайте определение тектонических структур: плита, платформа, щит, фундамент, осадочный чехол.
6. Перечислите важнейшие функции гидросферы Земли. Каким образом вода осуществляет терморегуляцию планеты?
7. Какова роль гидросферы в круговороте веществ в природе?
8. На какие отдельные зоны делится атмосфера? Каковы принципы этого деления?
9. Каков состав атмосферы?
10. В чем разница между климатом и погодой?
11. В чем заключается гипотеза возникновения атмосферы?
Глава 8 ЖИВАЯ МАТЕРИЯ
8.1. Электромагнитные взаимодействия как определяющие химический и биологический уровень организации материи
Живое вещество, как и вся материя Вселенной, состоит из атомов и молекул, для которых уже известны определенные законы поведения, в том числе на квантово-молекулярном уровне. В этом смысле при научном познании живого представляется вполне возможным применение физических представлений и моделей по исследованию развития природы и закономерностей процессов, проходящих в живом организме. По этому поводу советский физико-химик и биофизик М. В. Волькенштейн писал: «В биологии как в науке о живом возможны только два пути: либо признать невозможным объяснение жизни на основе физики и химии, либо такое объяснение возможно и его надо найти, в том числе на основе общих закономерностей, характеризующих строение и природу материи, вещества и поля».
По мнению многих исследователей, изучение проблем генетического кода, молекулярной природы наследственности и т. д. на заключительном этапе сводится к квантово-механическому объяснению всех этих явлений. В связи с этим следует отметить, что атомно-молекулярное толкование большинства явлений живого на сегодняшний день представляется наиболее верным. Вероятно, что живой и неживой природой управляют одни законы, однако механизм их проявления разный, что подтверждается синергетикой как наукой о неравновесных системах и самоорганизации.
Существование физических полей разной природы в живых организмах представляет значительный интерес. Это связано с одной стороны с раскрытием сущности физики живого, а с другой – с взаимодействием полей живых организмов с полями окружающей природной среды, обусловленными главным образом гелио– и геофизическими факторами. Эти взаимодействия обеспечивают живому организму необходимый ему объем информации в процессе жизнедеятельности. Функционирование всех систем живого организма динамично отражается в мозаике физических полей и излучений, исходящих из него, которые, в свою очередь, зависят от параметрических изменений естественных фоновых полей и излучений, окружающих живой организм.
Идентификация полей и излучений, например, человеческого организма сейчас широко используется в медицине для определения динамики различных физиологических процессов и выявления «неполадок» в функционировании определенных органов. Поэтому физические поля и излучения живого организма как бы есть своеобразное «табло» его физиологических процессов. Например, человеческий организм способен продуцировать инфракрасное излучение (ИК) и излучения сверхвысокой частоты (СВЧ), электромагнитные поля (ЭМП) и излучения (ЭМИ) и т. д. По существу, живой организм окружен биополем, под которым следует понимать присущую ему совокупность физических полей.
Электромагнитное взаимодействие обусловливается электрическими и магнитными зарядами. Электрический заряд всегда связан с элементарными частицами. Магнитные силы порождаются движением электрических зарядов, то есть электрическими токами. Согласно закону Кулона, сила электрического взаимодействия будет силой притяжения или отталкивания в зависимости от знаков взаимодействующих зарядов. Видимый свет, являющийся основой существования зеленых растений, синтезирующих органическое вещество на Земле, да и всего живого, является электромагнитным излучением определенного диапазона частот.
Согласно теории советского биохимика А. И. Опарина электромагнитные излучения Солнца и электрических разрядов явились энергетической основой абиогенного происхождения жизни. Именно с их помощью происходил процесс образования биомолекул: аминокислот, нуклиотидов, полисахаридов, белковых комплексов, а затем клетки как главной структуры живого.
Электромагнитные поля и электромагнитные излучения являются основными видами излучения для живых организмов. Почти все носители информации, воспринимаемые нашими органами чувств, имеют электромагнитную природу. Электромагнитные взаимодействия характеризуют структуру и поведение атомов, отвечают за связи между молекулами различных веществ, таким образом определяя химические и биологические явления.
Электромагнитные поля и излучения в живом организме связаны с возникновением, движением и взаимодействием электрических зарядов в процессе его онтогенеза. На клеточном уровне они возникают при работе митохондрий, на органном и организменном уровнях – при работе сердца и токе крови в сосудах, при нервных и мышечных сокращениях.
Электрические явления в живом организме характеризуются определенными последовательностями электрических импульсов и ритмами определенной характеристики, поскольку в каждом органе вырабатываются свои определенные, специфические электроколебательные процессы. Ритмичность и частота колебаний этих процессов зависят от степени активности организма (сон, бег, сильный стресс и т. д.). В свою очередь, активность физиологического состояния организма (например, человека) и его работоспособность также зависят от биоритмов и периодически меняются сообразно времени суток. Биологические ритмы как следствие эволюционного процесса проявляются на всех уровнях организации живой материи, начиная с клеток и заканчивая биосферой.
Ритмичность на уровне клеток живого организма определяется биохимическими колебательными процессами, связанными с движением ионов, необходимых для жизнедеятельности клетки (К+,Са2+ и др.), как вовнутрь клетки, так и из нее. Доказано, что общим регулятором внутриклеточных процессов являются ионы кальция. Именно они и их концентрация обеспечивают биологические ритмы клеток.
Ритмичность на уровне растительных организмов проявляется в годовом изменении темпов роста, суточном движении листьев; на уровне животных организмов в темпах двигательной активности, в колебаниях температуры, функционировании органов внутренней секреции, синтеза гормонов, белков, половой активности и т. д. Американский математик и кибернетик Н. Винер писал, что «именно ритмы головного мозга объясняют способность чувствовать время». Чем сложнее система, тем она обладает большим количеством биоритмов. Биоритмы определяют биологическое время и свойственны неравновесным самоорганизующимся живым системам.
Интенсивность физико-химических процессов в мембране и, следовательно, в самой клетке определяется величиной мембранного потенциала. Это значит, что энергия электрического поля в мембранах, подобно конденсаторам, играет важную роль в поддержании устойчивого/неустойчивого равновесия и рассматривается как резерв свободной энергии. Эта энергия, наряду с энергией АТФ (аденозинтрифосфат) и перекисного окисления липидов необходима живому организму для функционирования и развития.
Биохимические реакции в живом организме обусловлены биологическим током, возникающим при движении электронов и, в основном, ионов. При этом возрастает роль поляризации клеток и биополимерных молекул, роль структуры воды в процессах метаболизма. Изменения электрических свойств организмов связано с перераспределением в них электрических зарядов при их движении. Это же происходит и в потоке крови. Крови свойственны электропроводность и магнетизм. При ее движении по сосудам возникают электродинамические, электромагнитные и гидродинамические взаимодействия со стенками сосудов.
Следовательно, электромагнитные взаимодействия являются атрибутом существования живой материи на любом уровне ее организации. Живые организмы буквально плавают в море всевозможных физических полей – как внутренних, вырабатываемых самими организмами, так и внешних.
8.2. Симметрия и асимметрия в природе
Симметрия и асимметрия являются объективными свойствами природы, одними из фундаментальных в современном естествознании. Симметрия и асимметрия имеют универсальный, общий характер как свойство материального мира.
Симметрия (от греч. symmetria – соразмерность, порядок, гармония) является всеобщим свойством природы. Представление о симметрии у человека складывалось тысячелетиями. Термин «симметрия» фигурирует в представлениях человека как элемент чего-то «правильного», прекрасного и совершенного. В своих раздумьях над картиной мироздания человек определял симметрию как магическое качество природы, ее целесообразность, совершенство и старался отразить эти свойства в музыке, поэзии, архитектуре. В определенной мере симметрия выражает степень упорядоченности системы. В связи с этим имеется тесная корреляционная связь энтропии как меры неупорядоченности с симметрией: чем выше степень организованности вещества, тем выше симметрия и ниже энтропия.
Степень симметрии природных систем отражается в симметрии математических уравнений, законов, отображающих их состояние, в неизменности каких-либо их свойств по отношению к преобразованиям симметрии.
Симметрия – это понятие, отражающее существующий в природе порядок, пропорциональность и соразмерность между элементами какой-либо системы или объекта природы, упорядоченность, равновесие системы, устойчивость, то есть некий элемент гармонии.
Асимметрия – понятие, противоположное симметрии, отражающее разупорядочение системы, нарушение равновесия, что связано с изменением и развитием системы.
Из определений симметрии и асимметрии следует, что развивающаяся динамическая система должна быть обязательно несимметричной и неравновесной.
Современное естествознание представлено целой иерархией симметрий, которая отражает свойства иерархии уровней организации материи. Выделяют различные формы симметрий: калибровочные, пространственно-временные, изотопические, перестановочные, зеркальные и т. д. Все эти виды симметрий подразделяются на внешние и внутренние.
Внутреннюю симметрию невозможно наблюдать, она скрыта в математических уравнениях и законах, выражающих состояние исследуемой системы. Пример тому – уравнение Максвелла, описывающее взаимосвязь электрических и магнитных явлений, или теория гравитации Эйнштейна, связывающая свойства пространства, времени и тяготения.
Внешняя симметрия (пространственная или геометрическая) представлена в природе большим многообразием. Это симметрия кристаллов, молекул, живых организмов.
Для чего нужна симметрия живому и как она возникла?
Живые организмы формировали свою симметрию в процессе эволюции. Зародившиеся в водах океана, первые живые организмы имели правильную сферическую форму. Внедрение организмов в другие среды заставляло их адаптироваться к новым специфическим условиям. Один из способов такой адаптации – симметрия на уровне физической формы. Симметричное расположение частей органов тела обеспечивает живым организмам равновесие при движении и функционировании, жизнестойкость и адаптацию. Довольно симметричны внешние формы крупных животных, человека. Растительный мир организмов также наделен симметрией, что связано с борьбой за свет, физической устойчивостью к полеганию (закон всемирного тяготения). Например, конусообразная крона ели имеет строго вертикальную ось симметрии – вертикальный ствол, утолщенный книзу для устойчивости. Отдельные ветви симметрично расположены по отношению к стволу, а форма конуса способствует рациональному использованию кроной светового потока солнечной энергии, увеличивает устойчивость. Таким образом, благодаря притяжению и законам естественного отбора ель выглядит эстетически красиво и «построена» рационально. Внешняя симметрия насекомых и животных помогает им держать равновесие при движении, извлекать максимум энергии из окружающей среды и рационально ее использовать.
В физических и химических системах симметрия приобретает еще более глубокий смысл. Так, наиболее устойчивы молекулы, обладающие высокой симметрией (инертные газы). Симметрия молекул определяет характер молекулярных спектров. Высокая симметрия характерна для кристаллов. Кристаллы – это симметричные тела, их структура определяется периодическим повторением в трех измерениях элементарного атомного мотива.
Асимметрия также широко распространена в мире.
Внутреннее расположение отдельных органов в живых организмах часто асимметрично. Например, сердце расположено слева у человека, печень – справа и т. д. Л. Пастер, французский микробиолог и иммунолог, выделил левые и правые кристаллы винной кислоты. Молекула ДНК асимметрична – ее спираль всегда закручена вправо. Все аминокислоты и белки, входящие в состав живых организмов, способны отклонять поляризованный луч света влево.
В отличие от молекул неживой природы, где левые и правые молекулы встречаются часто, то есть носят в основном симметричный характер, молекулы органических веществ характеризуются ярко выраженной асимметрией. Придавая большое значение асимметрии живого, В. И. Вернадский предполагал, что именно здесь проходит тонкая граница между химией живого и неживого. Л. Пастер также, основываясь на этих признаках, провел границу между живым и неживым. Следует также отметить, что живые организмы (растения) в процессе жизнедеятельности поглощают из окружающей среды (почвы) в значительной степени химические соединения минеральной пищи, молекулы которой симметричны и в своем организме превращают их в асимметричные органические вещества: крахмал, белки глюкозу и т. д. Симметрия молекул пищевых веществ живого организма согласуется с симметрией молекул самого организма. В противном случае пища будет несовместимой (ядовитой).
Структура компонентов клетки также асимметрична, что имеет большое значение для ее обмена веществ, энергетической обеспеченности, а также способствует более высокой скорости протекания биохимических реакций.
Симметрия и асимметрия – это две полярные характеристики объективного мира. Фактически в природе нет чистой (абсолютной) симметрии или асимметрии. Эти категории – противоположности, которые всегда находятся в единстве и борьбе. Там, где ослабевает симметрия, возрастает асимметрия, и наоборот. На разных уровнях развития материи ей свойственна то симметрия, то асимметрия. Однако эти две тенденции едины, а их борьба носит абсолютный характер. Эти категории тесно связаны с понятиями устойчивости и неустойчивости систем, порядка и беспорядка, организации и дезорганизации, отражающими свойства систем и динамику развития, а также взаимосвязь между динамическими и статическими законами.
Полагая, что равновесие есть состояние покоя и симметрии, а асимметрия приводит к движению и неравновесному состоянию, можно считать, что понятие равновесия играет в биологии не менее важную роль, чем в физике. Принцип устойчивости термодинамического равновесия живых систем характеризует специфику биологической формы движения материи. Именно устойчивое динамическое равновесие (асимметрия) является ключевым принципом постановки и решения проблемы происхождения жизни.
8.3. Самоорганизация природы (понятие синергетики)
Случайные отклонения параметров системы от равновесия (флуктуации) играют очень важную роль в функционировании и существовании системы. Один из двух типов случайностей имеет направленный, созидательный и эволюционный характер, а второй создает неопределенность и играет деструктивную роль, отсекая все то лишнее и ненужное, что не укладывается в рамки фундаментальных законов и принципов бытия. Вследствие такого совместного действия возникает неустойчивость в системе, которая может служить толчком к возникновению из беспорядка (хаоса) определенных новых структур. Последние при благоприятных условиях переходят во все более устойчивые и упорядоченные аттракторы (от лат. attractio – притяжение). В дальнейшем их самопроизвольное (спонтанное) образование идет за счет внутренней перестройки самой системы и согласованного кооперативного взаимодействия всех ее частей и элементов в соответствии с требованиями окружающей среды. Самоупорядочивание системы всегда связано со снижением энтропии в ней. Случайность и дезорганизация на атомно-молекулярном уровне здесь выступают в качестве созидающей силы, которая упорядочивает состояние системы уже на макроуровне и объединяет ее элементы в единое целое. Это явление получило название самоорганизации.
Следовательно, самоорганизация – это процесс спонтанного возникновения порядка и организации из беспорядка (хаоса) в открытых неравновесных системах. За счет роста флуктуаций при поглощении энергии из окружающей среды система достигает некоторого критического состояния и переходит в новое устойчивое состояние с более высоким уровнем сложности и порядка по сравнению с предыдущим.
Таким образом, возникающая из хаоса упорядоченная структура (аттрактор) является результатом конкуренции множества всевозможных состояний, заложенных в системе. В результате конкуренции идет самопроизвольный отбор наиболее адаптивной в сложившихся условиях структуры. На такой концепции построена модель универсального эволюционизма, где дарвинское учение об изменчивости, наследственности и естественном отборе получило фундаментальное методологическое обоснование. Изменчивость окружающего мира обусловливается случайностью и неопределенностью как фундаментальным свойством материи. Наследственность, от которой зависит настоящее и будущее, определяется прошлым. Степень зависимости от прошлого определяется «памятью» системы, которая теоретически может принимать значения в диапазоне от нуля (хаотические образования) до максимально бесконечной величины (жесткие причинно обусловленные системы). Однако реальные системы имеют некоторый небольшой диапазон «памяти», определяемый уровнем их организации. Изменчивость дает возможность появиться многообразию различных вариантов развития систем, но наследственность значительно ограничивает их число. Она отбирает только жизненные, наиболее целесообразные и устойчивые в сложившейся обстановке структуры, устраняя при этом все нежизненные и неустойчивые.
Прошедшие отбор и передающиеся по наследству жизненные структуры постепенно под влиянием важных факторов накапливают определенные количественные изменения, что ослабляет их динамическую устойчивость (гомеостаз). Эти количественные изменения могут перейти в качественные путем скачка. При этом система на некоторое время оказывается в неустойчивом, флуктуационном состоянии, теряет «наследственную память». Характер ее последующего развития будет определяться случайными, непредвиденными факторами, действующими в это время на систему. При этом у системы для выхода из флуктуации есть только два пути: либо деградация и разрушение, либо самоорганизация, усложнение и эволюция. Подобный сценарий развития материи идет на всех ее структурных уровнях как череда сменяющих друг друга постоянных изменений. Таким образом, порядок и беспорядок, организация и дезорганизация выступают как диалектическое единство, их взаимодействие поддерживает саморазвитие системы.
Однако самым трудным положением самоорганизации являются вопросы, как получается, что система самопроизвольно переходит из состояния хаоса как наиболее вероятного с энергетической точки зрения в состояние порядка, менее вероятного и менее выгодного (как требующего более высокой энергии); как и благодаря чему происходит ее самоорганизация (самоупорядочение). Пока еще в современной науке на эти вопросы ответа нет.
Следует отметить, что в научном мире и в научной литературе одни авторы используют термин «самоорганизация», а другие – «синергетика» (от греч. synergeia – сотрудничество, содружество). Фактические значения слов «самоорганизация» и «синергетика» существенно различаются, но их концептуальный смысл одинаков. Синергетика – область научных исследований коллективного поведения частей сложных систем, связанных с неустойчивостями и касающихся процессов самоорганизации. Синергетика – это теория самоорганизации систем различной природы, предметом которой они являются.
Сама идея самоорганизации (синергетики) имела место еще в классической науке XVIII–XIX вв. Это космогоническая гипотеза Канта– Лапласа, теория эволюции Ч. Дарвина, теория поведения термодинамических систем Максвелла-Больцмана. Однако лишь только в 70-е гг. XX в., когда были накоплены большой теоретический материал и практический опыт, появилась возможность детального исследования открытых, неравновесных систем, анализа и описания механизмов и закономерностей их развития. Основные положения теории синергетики разработаны в трудах Г. Хакена, Г. Николиса, И. Пригожина в 70-х гг. XX в. Сам термин «синергетика» в научный обиход ввел Г. Хакен, немецкий физик, профессор Штутгартского университета. Большую роль в становлении теории самоорганизации сыграли работы наших соотечественников: В. Вернадского, Б. Белоусова, В. Жаботинского, А. Руденко, Ю. Климантовича, А. Колмогорова. Современное естествознание идет по пути теоретического моделирования сложнейших природных систем, способных к саморазвитию и самоорганизации.
На идеях синергетики сформировалось современное миропонимание. Природа сквозь призму синергетики предстает как развивающаяся, нелинейная, открытая сложноорганизованная иерархическая система. Учитывая, что в природе и обществе существует огромное количество реальных систем, которые подчиняются законам синергетики, необходимо понять, что создание синергетической картины мира по сути своей является научной революцией, по своему статусу сравнимой с открытием строения атома, созданием генетики и кибернетики. Идеи синергетики стали основой для сближения традиционной европейской мысли об уровнях организации материи с идеями древней восточной философии о глобальной взаимосвязи и взаимозависимости всего сущего, о взаимодействии потенциального и реального.
8.4. Основные свойства самоорганизующихся систем
Открытые системы
Основным понятием термодинамики является понятие энтропии как меры способности теплоты к превращению. Энтропия характеризует меру внутренней неупорядоченности системы. Она свойственна изолированным, то есть закрытым системам, находящимся в тепловом равновесии с окружающей средой. По отношению к закрытым системам были сформулированы и два закона (начала) термодинамики.
Качественное отличие закрытой (замкнутой) системы от открытой в том, что в первой тоже может сохраняться неравновесная ситуация, однако до тех пор, покуда система за счет своих внутренних процессов не достигнет равновесия, при котором энтропия будет максимальной. Иное дело в открытых системах, которые обмениваются энергией с окружающей средой. Здесь за счет прихода энергии извне могут возникать диссипативные структуры с гораздо меньшей энтропией. Иначе говоря, система, самоорганизуясь в новом стационарном состоянии, уменьшает свою энтропию, она как бы «сбрасывает» ее избыток, возрастающий за счет внутренних процессов, в окружающую среду. В живых организмах это происходит за счет дыхания, экскреции. Открытая система как бы «питается» отрицательной энтропией (негэнтропией), выбрасывая наружу положительную. При этом возникают новые устойчивые неравновесные, но близкие к равновесию состояния. При таком неравновесии рассеивание энергии минимально и интенсивность роста энтропии оказывается меньше, чем в других близких состояниях. Здесь имеет место принцип производства минимума энтропии. Открытые системы – это необратимые системы. Для них весьма важен фактор времени.