Области применения магнитных материалов
Некоторые области применения полимерных магнитов:
1. Акустические системы, реле и бесконтактные датчики
2. Электромашины, магнитные сепараторы, холодильники
3. Магнитные элементы кодовых замков и охранной сигнализации
4. Тахогенераторы, датчики положения, электроизмерительные приборы
5. Медицина (магнитотерапия, магнитные матрасы)
6. Автоматизированное шоссе, где в США предусматривается разместить до полутонны ферритовых магнитопластов на одну милю шоссе для автоматического управления движением автомобиля, оснащенного специальным компьютером и системой слежения
7. Магнитное покрытие для полов офисов и промышленных помещений
8. Магнитная компонента для глушителей автомобилей (в Европе на эти цели уходит 23000 тонн магнитопластов)
9. Периферийные устройства компьютеров, мобильные телефоны, фотоаппараты, кинокамеры
10. Магнитные устройства для обработки воды, углеводородного топлива, масел; магнитные фильтры
11. Магнитные устройства для использования в рекламе, торговле, при оснащении выставок, конференций, спортивных мероприятий и т. д.
12. Неразрушающие методы контроля (Магнитопорошковый контроль)
НАМАГНИ́ЧЕННОСТЬ, характеристика магнитного состояния макроскопического физического тела. Любое вещество, помещенное в магнитное поле, приобретает некоторый магнитный момент. Намагниченность J – это магнитный момент единицы объема. В случае однородно намагниченного тела намагниченность определяется как:
J = M/V
где М — магнитный момент тела, V — его объем.
В несильных полях намагниченность прямо пропорциональна напряженности поля, вызывающего намагничивание: J =H, где — магнитная восприимчивость вещества.
В случае неоднородно намагниченного тела намагниченность определяется для каждого физически малого объема dV:
J = dM/dV,
где dM — магнитный момент объема dV.
Единица намагниченности в Международной системе единиц — ампер на метр (1 А/м — это такая намагниченность, при которой 1 м3 вещества обладает магнитным моментом 1 Ахм2).
Намагниченность тел зависит от внешнего магнитного поля и температуры.
У ферромагнетиков зависимость J от напряженности внешнего поля Н выражается кривой намагничивания. В изотропных веществах направление J совпадает с направлением Н, в анизотропных направления J и Н в общем случае не совпадают.
Напряжённость магни́тного по́ля — (стандартное обозначение Н) это векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M.
В СИ: , где - магнитная постоянная
В СГС:
§ В простейшем случае изотропной (по магнитным свойствам) среды и в приближении достаточно низких частот изменения поля B и H просто пропорциональны друг другу, отличаясь просто числовым множителем (зависящим от среды) B = μ H в системе СГС или B = μ0μ H в системе СИ (см. Магнитная проницаемость, также см. Магнитная восприимчивость).
В системе СГС напряжённость магнитного поля измеряется в Эрстедах (Э), в системе СИ — в амперах на метр (А/м). В технике Эрстед постепенно вытесняется единицей СИ — ампером на метр, 1 Э = 1000/(4π) А/м = 79,5775 А/м.
Править]Физический смысл
В вакууме (или в отсутствие среды, способной к магнитной поляризации, а также в случаях, когда последняя пренебрежима) напряженность магнитного поля совпадает с вектором магнитной индукции.
В магнетиках (магнитных средах) напряженность магнитного поля имеет физический смысл «внешнего» поля, то есть совпадает (быть может, в зависимости от принятых единиц измерения, с точностью до постоянного коэффициента, как например в системе СИ, что общего смысла не меняет) с таким вектором магнитной индукции, какой «был бы, если магнетика не было».
Например, если поле создается катушкой с током, в которую вставлен железный сердечник, напряженность магнитного поля H внутри сердечника совпадает (в СГСточно, а в СИ - с точностью до постоянного размерного коэффициента) с вектором B0, который был бы создан этой катушкой при отсутствии сердечника и который в принципе может быть рассчитан исходя из геометрии катушки и тока в ней, ничего не зная о материале сердечника и его магнитных свойствах.
При этом надо иметь в виду, что более фундаментальной характеристикой магнитного поля является именно вектор магнитной индукции B, именно он определяет силу действия магнитного поля на движущиеся заряженные частицы и токи, а также может быть непосредственно измерен, в то время как напряженность магнитного поля Hможно рассматривать скорее как вспомогательную величину (хотя рассчитать её, по крайней мере, в статическом случае, проще, в чём и состоит её ценность: ведь Hсоздают так называемые свободные токи, которые сравнительно легко непосредственно измерить, а трудно измеримые связанные токи - то есть токи молекулярные и т.п. - учитывать не надо).
Правда, в обычно используемое выражение для энергии магнитного поля (в среде) B и H входят почти равноправно, но надо иметь в виду, что в эту энергию включена и энергия, затраченная на поляризацию среды, а не только энергия собственно поля[1]. Энергия магнитного поля как такового выражается только через фундаментальное B. Тем не менее, мы и из этого видим, что величина H феноменологически и тут весьма удобна.
Примечания
1. ↑ Действительно, для иллюстрации рассмотрим выражение для так называемой плотности энергии поля в среде для сравнительно простого случая линейной связи намагниченности напряженности магнитного поля . Тогда (используем здесь СИ) раскрывается как
где первый член - энергия магнитного поля в чистом виде, поскольку второй - совершенно очевидно энергия взаимодействия поля со средой - например с магнитными диполями парамагнетика.
Магнитная восприимчивость, физическая величина, характеризующая связь между магнитным моментом (намагниченностью) вещества и магнитным полем в этом веществе.
Объёмная Магнитная восприимчивость равна отношению намагниченности единицы объёма вещества J к напряжённости Ннамагничивающего магнитного поля: = J /H. Магнитная восприимчивость — величина безразмерная и измеряется в безразмерных единицах Магнитная восприимчивость, рассчитанная на 1 кг (или 1 г) вещества, называется удельной (уд = /r, где r — плотность вещества), а Магнитная восприимчивость одного моля — молярной: c = уд×М, где М — молекулярная массавещества.
Магнитная восприимчивость, может быть как положительной, так и отрицательной. Отрицательной Магнитная восприимчивость обладают диамагнетики, они намагничиваются не по полю, а против поля. У парамагнетиков и ферромагнетиковМагнитная восприимчивость положительна (они намагничиваются по полю). Магнитная восприимчивость диамагнетиков и парамагнетиков мала (~10-4—10-6), она слабо зависит от Н и то лишь в области очень сильных полей (и низких температур). Значения Магнитная восприимчивость приведены в таблице.
Магнитная восприимчивость достигает особенно больших значений в ферромагнетиках (от нескольких десятков до многих тысяч единиц), причём она очень сильно и сложным образом зависит от Н. Поэтому для ферромагнетиков вводят дифференциальнуюМагнитная восприимчивость kд = dJ / dH. При Н = 0 (см. рис.) Магнитная восприимчивость ферромагнетиков не равна нулю, а имеет значение kа, называемое начальной Магнитная восприимчивость С увеличением Н Магнитная восприимчивость растет, достигает максимума (kмакс) и затем вновь уменьшается. В области очень высоких значений Н Магнитная восприимчивостьферромагнетиков (при температурах, не очень близких к точке Кюри) становится столь же незначительной, как и в обычных парамагнетиках (область парапроцесса). Вид кривой k (H) (кривая Столетова) обусловлен сложным механизмом намагничиванияферромагнетиков. Типичные значения k а и kмакс: Fe ~ 1100 и ~ 22000, Ni ~ 12 и ~ 80, сплав пермаллой ~ 800 и ~8000 (в нормальных условиях).
Магнитная восприимчивость, как правило, зависит от температуры (исключение составляют большинство диамагнетиков и некоторые парамагнетики — щелочные и, отчасти, щёлочноземельные металлы). М, в. парамагнетиков уменьшается с температурой, следуя Кюри закону или Кюри — Вейса закону. В ферромагнитных телах Магнитная восприимчивость с ростом температуры увеличивается, достигая резкого максимума вблизи точки Кюри q. М в. антиферромагнетиков увеличивается с ростом температуры до точки Нееля, а затем падает по закону Кюри — Вейса (см. Кюри точка).
Магнитная проницаемость
Величина, характеризующая способность вещества намагничиваться, называется магнитная проницаемость (µ). Она показывает, во сколько раз магнитная индукция в данном веществе больше или меньше магнитной индукции в вакууме.
Магнитная индукция в какой-либо точке поля в данной среде определяется по формуле
где B – магнитная индукция в теслах;
I – величина тока в амперах;
L – расстояние от оси провода до исследуемой точки поля в метрах;
µ — магнитная проницаемость среды.
За единицу измерения магнитной проницаемости в Международной системе единиц принят 1 генри на метр.
Магнитная проницаемость среды равна 1 гн/м, если в точке, удаленной от оси проводника с током на 1 метр, при силе тока, равной 2π ампера, магнитная индукция равна 1 тесле.
Величина магнитной проницаемости среды может быть выражена в виде произведения двух сомножителей
где µ — магнитная проницаемость среды;
µ0 – магнитная проницаемость вакуума;
µr – относительная магнитная проницаем ость, представляющая собой отвлеченное число, показывающее отношение величины магнитной проницаемости данного вещества к магнитной проницаемости вакуума.
Магнитная проницаемость вакуума µ0 в Международной системе единиц равна
Диамагнетики
Электронные оболочки атомов можно условно рассматривать состоящими из круговых электрических токов, образованных движущимися электронами. Круговые электрические токи в атомах должны создавать собственные магнитные поля. На электрические токи должно оказывать действие внешнее магнитное поле, в результате чего можно ожидать либо усиления магнитного поля при сонаправленности атомных магнитных полей с внешним магнитным полем, либо их ослабления при их противоположной направленности.
Гипотеза о существовании магнитных полей в атомах и возможности изменения магнитного поля в веществе полностью соответствует действительности. Опыт показывает, что вещества по действию на них внешнего магнитного поля можно разделить на три основные группы: диамагнетики, парамагнетики и ферромагнетики.
Целесообразно будет рассмотреть понятие магнитной проницаемости. Отношение индукции В магнитного поля в веществе к индукции В0 в вакууме называется магнитной проницаемостью и обозначается буквой µ:
µ =В/В0.
Изменение магнитного поля даже в самых сильных диамагнетиках составляет лишь сотые доли процента. Например, висмут обладает магнитной проницаемостью µ = 0,999826.
Диамагнетиками называются вещества, в которых внешнее магнитное поле ослабляется. Это значит, что магнитные поля атомов таких веществ во внешнем магнитном поле направлены противоположно внешнему магнитному полю (µ < 1).
Для понимания природы диамагнетизма рассмотрим движение электрона, который влетает со скоростью v в однородное магнитное поле перпендикулярно вектору В магнитного поля.
Под действием силы Лоренца электрон станет двигаться по окружности, направление его вращения определяется направлением вектора силы Лоренца. Возникший круговой ток создаёт своё магнитное поле В'. Это магнитное поле В' направлено противоположно магнитному полю В. Следовательно, любое вещество, содержащее свободно движущиеся заряженные частицы, должно обладать диамагнитными свойствами.
Хотя в атомах вещества электроны не свободны, изменение их движения внутри атомов под действием внешнего магнитного поля оказывается эквивалентным круговому движению свободных электронов. Поэтому любое вещество в магнитном поле обязательно обладает диамагнитными свойствами.
Однако диамагнитные эффекты очень слабы и обнаруживаются только у веществ, атомы или молекулы которых не обладают собственным магнитным полем.
Вещества, в которых внешнее магнитное поле усиливается в результате сложения с магнитными полями электронных оболочек атомов вещества из-за ориентации атомных магнитных полей в направлении внешнего магнитного поля, называются парамагнетиками (µ > 1).
Парамагнетики очень слабо усиливают внешнее магнитное поле. Магнитная проницаемость парамагнетиков отличается от единицы лишь на доли процента. Например, магнитная проницаемость платины равна 1, 00036. Из – за очень малых значений магнитной проницаемости парамагнетиков и диамагнетиков их влияние на внешнее поле или воздействие внешнего поля на парамагнитные или диамагнитные тела очень трудно обнаружить. Поэтому в обычной повседневной практике, в технике парамагнитные и диамагнитные вещества рассматриваются как немагнитные, то есть вещества, не изменяющие магнитное поле и не испытывающие действия со стороны магнитного поля.
Вещества, значительно усиливающие внешнее магнитное поле, называются ферромагнетиками (никель, железо, кобальт и др.).