Цезин-137 и стронция-90 в пищевых продуктах и питьевой воде, установленные в связи с аварией на Чернобыльской АЭС (ВДУ-91)
Продукт Удельная активность, Ки/кг, Ки/л
Цезий-137
Вода питьевая 5,0-10'°
Молоко, кисломолочные продукты, сметана, творог,
сыр, масло сливочное 1,0-10-8
Молоко сгущенное и концентрированное 3,0-10-8
Молоко сухое 5,0-10-8
Мясо (говядина, свинина, баранина), птица, рыба,
яйца (меланж), мясные и рыбные продукты 2,0-10-8
Жиры растительные и животные, маргарин 5.0-10-9
Хлеб и хлебопродукты, крупы, мука, сахар 1,0-10-8
Картофель, корнеплоды, овощи, стоповая зелень,
садовые фрукты и ягоды (отмытые от почвенных
частиц), консервированные продукты из овощей,
садовых фруктов и ягод, мед 1,6-10-8
Сухофрукты 8,0-10-8
Свежие дикорастущие ягоды и грибы
(отмытые от почвенных частиц) 4,0-10-8
Сушеные дикорастущие ягоды и грибы, чай 2,0 - 10-7
Специализированные продукты детского питания
(всех видов, готовые к употреблению) 5.0-10-9
Лекарственные растения 2,0 - 10-7
Стронций-90
Вода питьевая 1,0-10'°
Молоко и молочные продукты 1,0 - 10 9
Молоко сгущенное 3,0 - 10 9
Молоко сухое 5,0 - 10 9
Хлеб и хлебопродукты, крупы, мука, сахар 1,0 - 10 9
Картофель 1,0 - 10 9
Специализированные продукты детского питания
(всех видов, готовые к употреблению) 1,0-10'°
Примечания: 1. Отдельные субъекты РФ (республики и т. д.) имеют право устанавливать контрольные уровни содержания радионуклидов в пищевых продуктах и питьевой воде как для всей республики, так и для отдельных территорий. При этом они не должны превышать численных значений ВДУ-91. Контрольные уровни устанавливаются исходя из реальной радиационной обстановки и экономических возможностей республики в целом или отдельных территорий,
2. Производство детского питания из продуктов, получаемых на загрязненных территориях, не рекомендуется.
3. Соблюдение ВДУ по цезию-137, как правило, обеспечивает соблюдение ВДУ по стронцию-90.
— это употребление определенных пищевых продуктов и их отдельных компонентов. Особенно это касается защиты организма от долгоживущих радионуклидов (например, стронций-90), которые способны мигрировать по пищевым цепям, накапливаться в органах и тканях, подвергать хроническому облучению костный мозг и костную ткань, повышая риск развития злокачественных новообразований. Установлено, что обогащение рациона рыбной массой, ламинарией, костной мукой, кальцием, фтором способствует уменьшению риска возникновения онкологических заболеваний. Большой интерес в рассматриваемом вопросе представляют неусвояемые углеводы, которые применяют для обогащения пищевых продуктов лечебно-профилактического назначения. Немаловажное значение в профилактике радиоактивного воздействия имеют /?-каротин и пищевые продукты с высоким содержанием этого провитамина.
3.2. Полимерные и другие материалы, используемые в пищевой промышленности, общественном питании и торговле
Специфика применения полимерных материалов в пищевой промышленности и общественном питании заключается в том, что они соприкасаются с продовольственным сырьем и пищевыми продуктами. Поэтому к полимерным материалам предъявляются
специфические требования, исходя из направления их использования.
Полимеры бывают синтетические и натуральные, последние могут быть модифицированы химическими способами обработки. На практике указанные полимеры применяют не в чистом виде, а в различных сочетаниях. При этом в состав полимерных композиций вводят отвердитепи, пластификаторы, наполнители, красители, порообразователи, другие компоненты для придания полимерам определенных свойств.
Полимерные материалы, контактирующие с продуктами питания, должны обладать необходимыми эксплуатационными свойствами и соответствовать гигиеническим, требованиям. Эксплуатационные свойства (химическая стойкость, проницаемость и т. д.) зависят от назначения пищевого продукта, условий эксплуатации упаковки или оборудования. Гигиенические требования разрабатываются и утверждаются органами Роспотребнадзора (бывшего Госсанэпиднадзора) в результате токсикологических и других специальных исследований.
Использование полимерных и других материалов в качестве упаковки направлено на решение следующих задач:
• обеспечение возможности расфасовки и транспортировки продуктов;
• защита от воздействия окружающей среды, болезнетворных и вредных микроорганизмов;
• сохранение питательной ценности продукта;
• увеличение срока его годности и т. д.
При этом материалы не должны изменять органолептических свойств продукта и, как это было сказано выше, выделять химические вещества, оказывающие в определенных количествах вредное воздействие на организм человека. Добавки и низкомолекулярные примеси химически не связаны с полимером, поэтому при определенных условиях они легко переходят в продукты питания и могут неблагоприятно влиять на здоровье человека. В рецептуру полимерного или другого материала не должны входить вещества, обладающие токсичностью. Список таких веществ определяется службой Роспотребнадзора.
Добавки подразделяются на допустимые и недопустимые в зависимости от биологической активности, степени миграции из полимерных материалов, опасности вредного влияния на организм. Использование добавок регламентируется гигиеническими нормативами, определенными в токсикологическом эксперименте. Такими нормативами являются: ДКМ — допустимое количество миграции, ДМ — максимально допустимая суточная доза {измеряются в мг/л).
3.2.1 Соединения, наиболее часто применяемые в технологии производства полимерных материалов:
1. Мономеры.Типичным представителем является стирол (винилбензол} — это бесцветная жидкость, имеющая характерный запах, кипит при 146 °С; ДКМ — 0,01 мг/л; используется при получении полистирола. Эпихлоргидрин — бесцветная жидкость с раздражающим запахом, кипит при 116 °С, благодаря содержанию хлора обладает высокой биологической активностью; ДКМ — 0,1 мг/л. Винипхлорид — бесцветный газ без запаха, кипит при 13,8 °С; ДКМ —0,01 мг/л.
2. Катализаторы и инициаторы полимеризации. В качестве катализаторов используют, как правило, неорганические соединения. Их остаточное содержание в полимере характеризуется величиной зольности. Зольность полиэтилена, контактирующего с пищевыми продуктами, не должна превышать 0,02 %.
В качестве инициаторов используют кислородорганические и неорганические перекиси, гидроперекиси и диазосоединения. Их содержание в полимерных материалах не должно превышать 0,2 %.
3. Стабилизаторыприменяются для сохранения заданных свойств полимеров; подразделяются на антиоксиданты, антиозонаты, свето-, термостабилизаторы и т. д. Среди термостабипизаторов широко распространены стеараты металлов: кальция, цинка, бария, свинца и др. Стеараты кальция и цинка малотоксичны, другие известные стеараты обладают высокой токсичностью.
4. Пластификаторы. Используются для повышения пластичности и (или) эластичности, придания полимерным материалам морозо- водо-, маслостойкости и т. д. Наиболее широко применяются: глицерин, парафиновое масло, этаноламины, эфиры фталевой, себациновой, адипиновой и лимонной кислот, низкомолекупярные полиэфиры, стеариновая кислота и ее соли (стеараты кальция и цинка), ацетилтрибутилцитрат, этолгексилфенилфосфат и др. Указанные пластификаторы практически нетоксичны.
5. Наполнителивводят для облегчения переработки, придания прочности и т. д. Используют двуокись кремния, мел, целлюлозу, древесный шпон, двуокись титана, которые малотоксичны и не представляют опасности для здоровья человека.
6. Растворители. Используют в процессе проведения полимеризации или поли конденсации. Как правило, это органические соединения: толуол, бензол, этилацетат, гексан, бензин, метиленхлорид и др,, которые могут оставаться в незначительных количествах вготовых полимерных материалах и мигрировать в пищевой продукт. Степень их токсичности определена в специальных справочниках.
7. Красители. Могут быть как природного, так и синтетического происхождения. Последние подразделяют на органические и неорганические, включая различного рода пигменты. В зависимости от происхождения красители отличаются по степени своей безопасности.Гарантия безвредности красителей устанавливается допустимым количеством миграции (ДКМ).
Старение полимерных материалов — неизбежный процесс, сопровождающий эксплуатацию полимеров. Под влиянием внешних условий, воздействием самих продуктов питания полимерные материалы подвергаются различным физико-химическим изменениям. Протекают реакции деструкции — разрыв молекулярной цепи полимеров. Все это сопровождается изменением внешнего вида, свойств полимеров, увеличивается вероятность миграции в продукт вредных соединений, образующихся в процессе старения. Так, например, при деструкции полиэтилена выделяются формальдегид, ацетальдегид, олигомеры. Полипропилен наряду с вышеуказанными соединениями дает ацетон, метиловый и другие спирты. Для наиболее токсичных веществ — формальдегида и метилового спирта — установлены ДКМ, которые соответственно составляют 0,1 мг/л и 1,0 мг/л. Деструкция полистирола сопровождается миграцией стирола, а-метилстирола, этилбензола, бензальдегида, бензофенола, других ароматических альдегидов и кетонов; деструкция поливинилхлорида (ПВХ} — выделением альдегидов, спиртов, хлористого водорода, хлорированных и непредельных углеводородов. При старении метилметакрилата выделяются метиловый спирт (ДКМ — 0,15 мг/л), метакриловая кислота, непредельные углеводороды. Аминопласты разлагаются с образованием формальдегида, аммиака; фенопласты — фенола (ДКМ — 0,001 мг/п), альдегидов; эпоксидные смолы — эпихлоргидрина (ДКМ — 0,7 мг/л), фенола, хлорированных и ароматических углеводородов.
С целью повышения стойкости полимеров к старению в их состав вводят стабилизаторы, пластификаторы, катализаторы, другие вещества, которые, как это было указано выше, могут переходить в пищевой продукт, а поэтому подлежат обязательному гигиеническому контролю.
Обращает внимание проблема утилизации полимерных материалов. Перспективным направлением можно считать разрушение полимеров под действием кислорода, ультрафиолетового излучения, других природных факторов с последующим уничтожением продуктов распада микроорганизмами. Практический интерес представляет фоторазрушение полимера путем введения в его структуру фотоактивных центров. В этом случае необходим гигиенический контроль за возможной миграцией из полимера сенсибилизаторов фоторазрушения.
Полимерные материалы применяют для упаковки пищевых продуктов в зависимости от их химической природы и физической структуры. Полиэтилен используется для упаковки водосодержащих продуктов и ограниченно — жиросодержащих. Полиамид предназначен для жироемких продуктов и неприемлем для контакта с водой. Таких примеров можно привести много, что свидетельствует об избирательности использования полимеров, необходимости их модификации в зависимости от назначения и условий эксплуатации.
3.2.2 Полимерные материалы, химические вещества которых способны мигрировать в пищевой продукт.
В настоящее время в пищевой промышленности и общественном питании находят применение следующие виды полимерных материалов, химические вещества которых способны мигрировать в пищевой продукт: