Самоорганизация в микромире. Формирование элементного состава вещества материи
На основе достижений ядерной физики в первой половине прошлого века удалось понять механизм образования химических элементов в природе. В 1946–1948 гг. американский физик Д. Гамов разработал теорию образования химических элементов на основе термоядерного синтеза. В дальнейшем данная теория нашла блестящее экспериментальное подтверждение.
Согласно указанной теории, существующие в природе химические элементы образовались в результате длительной эволюции от Большого взрыва до наших дней (~15–20 млрд. лет). Эволюция химического состава в природе связана со звездообразованием и эволюцией звезд и включает несколько этапов.
На первом этапе происходило образование атомов нейтрального водорода из появившихся во время Большого взрыва электронов и протонов – первых частиц вещественной материи.
Второй этап – образование из рассеянного в космосе водородного газа под действием гравитации все более уплотняющихся сгустков водородного вещества. Постепенное возрастание давления внутри сжимающегося облака в соответствии с физическими законами привело к возрастанию температуры. При температуре порядка 107 К происходил термоядерный водородный синтез.
Циклы ядерных реакций. В 1939 г. американский физик-теоретик Г. Бете разработал теорию двух циклов ядерных реакций, идущих в недрах звезд: протон-протонного и углеродного.
Протонный цикл идет по схеме:
1H + 1H → 2D; 2D + 1H → 3He; 3He + 3He → 4He + 21H,
где 1Н — протон;
2D — ядро изотопа водорода – дейтерия;
3Не — ядро изотопа гелия;
4Не — ядро атома гелия.
Конечным результатом данной последовательности реакций, называемой протон-протонной цепочкой, или водородным циклом, является превращение четырех ядер атомов водорода в одно ядро гелия (т.е. для протекания реакции требуется только водород).
Другой цикл ядерных реакций – углеродный – требует наличия углерода, служащего катализатором процессов всего дальнейшего ядерного синтеза. Углерод в звездах образуется следующим образом. После того как в результате слияния четырех ядер водорода и образования одного ядра гелия постепенно «выгорает» весь водород, внутреннее ядро звезды составляет только гелий.
Сжатие гелиевого ядра звезды приводит к дальнейшему повышению его внутренней температуры, в результате чего в термоядерные реакции включаются все более тяжелые ядра, и протекает синтез всех химических элементов.
После водородных реакций при температурах свыше 150∙106 К начинает идти реакция слияния ядер гелия.
Изучение реакций синтеза ядер гелия показало, что слияние циух ядер гелия 4Не приводит к образованию неустойчивых ядер бериллия 8Ве, а слияние трех ядер гелия 4Не – к образованию устойчивых ядер углерода 12С.
На следующем этапе в результате слияния ядер углерода 12С и гелия 4Не образуется ядро кислорода 16О, который, присоединяя ядро гелия 4Не, образует ядро неона 20Ne и т.д.
Таким образом, в звездах за время их жизни в процессе ядерных реакций синтезируется определенное количество различных элементов, которые в ряде случаев после угасания звезд рассеиваются в пространстве, изменяя тем самым состав межзвездного газа. Вновь образовавшиеся звезды уже из другого по составу межзвездного вещества имеют иные исходные условия для протекания последующих в них термоядерных реакций. Данный процесс формирования химических элементов веществ в природе происходит непрерывно.
Современные астрофизические исследования спектров звезд позволили установить их химический состав. Оказалось, что полученные временные ряды звезд разных поколений и разного элементного состава находятся в хорошем согласии с рассмотренной теорией. Имеются звезды, в основном состоящие только из водорода и гелия (в них реализуется только протон-протонный термоядерный цикл), а также звезды с относительно большим содержанием более тяжелых элементов таблицы Менделеева в соответствии с углеродным циклом,