Первый биотический круговорот
(цианобактериальное сообщество)
Первичные гетеротрофные клетки, естественно, были частично окрашенными и потому взаимодействовали с потоком солнечного излучения. Оно могло разрушать молекулы, особенно его УФ-часть, или терялось в виде тепла. Но в толще воды, более интенсивно поглощавшей коротковолновое излучение, могли иметь место и другие взаимодействия, в частности взаимодействия о длинноволновым излучением. Поглощение света сложными молекулами могло приводить к развитию фотохимических реакций, в которых за счет энергии света при обычных температурах преодолевались высокие энергетические барьеры. Это приводило и к ускорению скоростей реакций, и к практически необратимому синтезу еще более сложных соединений. Естественно считать, что флюоресцирующие сложные молекулы, входящие в состав живых клеток, вначале приводили к ускорению лишь некоторых процессов метаболизма, а не к прямому фотосинтезу органических веществ.
Среди фотосенсибилизаторов, т.е. оптически активных молекул, возбуждаемых квантами света, наиболее часто встречаются (как составные части ферментов) соединения, построенные путем сочетания неорганических ионов с органической основой, которую, как правило, составляет порфириновый цикл. Порфирины могут образовываться из пирролов и формальдегида, несколько хуже в восстановительной, чем в окислительной среде, а для синтеза наиболее восстановленных порфиринов требуются строго анаэробные условия. Включение металла в центр порфириновой молекулы заметно увеличивает ее фотохимическую активность, а кроме того, и сильно увеличивает интенсивность окраски порфирина и тем самым его способность к поглощению видимого света. Дальнейшая эволюция шла по пути увеличения количества светочувствительных пигментов и усложнения их структур.
Серьезным завоеванием на пути к полной автотрофии явился анаэробный фотосинтез. Его представителями, сохранившимися до нашего времени, являются фотосинтезирующие бактерии (пурпурные, серные и несерные; зеленые серные бактерии). Они способны усваивать энергию света, но еще не способны к отрыву электрона от воды. Они используют в качестве восстановителя (источника электрона и водорода) различные органические или неорганические соединения. Например, для фотохимического отнятия электрона от сероводорода требуется значительно меньше энергии, чем для отнятия его от воды.
Главным эволюционным приобретением, лежащим в основе фотосинтеза, как в целом качественно нового этапа в развитии биоэнергетических систем на Земле, следует считать организацию электронного потока. Именно он оказался наиболее эффективным способом запасать энергию электронного возбуждения в виде химических связей.
Постепенное уменьшение содержания в среде восстановленных органических субстратов заставило в обостряющейся конкурентной борьбе расширять круг используемых источников углерода. Световая энергия из дополнительного источника энергии, облегчавшего фотоассимиляцию имевшихся органических соединений, превращалась в основной, более мощный поток. В клетках накапливалось большое количество пигментов, шел отбор наиболее эффективно работающих систем, происходило пространственное упорядочивание пигментных структур, совершенствовались механизмы миграции энергии возбуждения от всей массы пигментов к каталитически активно работающему пигменту — активному центру. (В современных организмах энергия, поглощенная большим количеством пигментов, находящихся в агрегированных структурах, очень быстро и эффективно передается к активному центру.)
При растущем дефиците органических соединений фотосинтезирующие бактерии приобрели способность усваивать в качестве источника углерода углекислоту, широко имевшуюся в наличии. Но, чтобы восстанавливать CO2 до уровня восстановленности углеродсодержащих соединений клетки (типа углеводов—(CH2O)n), потребовался постоянный источник электронов (протонов). Световая энергия стала расходоваться на образование АТФ и на образование восстановителя, и таким образом сформировался нециклический путь переноса электронов. Возникавшие электронные вакансии в возбужденных молекулах хлорофилла (дырки) потребовалось заполнить за счет организации непрерывного притока электронов. В окружающей среде шел поиск соединений, способных выполнять функцию внешних доноров электронов. Одной из таких находок и были соединения серы, о которых мы уже говорили. Использование соединений серы автоматически привязывало организмы к местам, где эти соединения имелись.
Самым распространенным веществом у поверхности Земли была вода. Поэтому организмам, способным использовать воду в качестве донора электронов, была гарантирована победа в борьбе за существование. Из тех древнейших форм прокариотных клеток, способных к фотолизу воды, до нас дошли современные варианты — цианобактерии, или синезеленые водоросли.
С развитием прокариотных фотосинтезирующих клеток (около 3 млрд лет назад) замкнулся биотический круговорот. Появилась возможность существования обеих ветвей, имеющих живую основу: ветви синтеза и ветви деструкции. Их энергетическая независимость от абиогенного химического синтеза может считаться одной из основных черт данного этапа. Жизнь в виде биотического круговорота вступила в свои права и стала перестраивать лик планеты.
Для нас наиболее важно, что в пределах группы цианобактерии сформировался и развился новый тип энергетики, который затем был «принят на вооружение» и высшими организмами. Это формирование фотосистемы II, обеспечивающей использование воды и выделение молекулярного кислорода. Развитие этой фотосистемы связано с появлением новой группы фоторецепторов (типа хлорофилла а и фикобилипротеидов) и образованием фотохимически активных реакционных центров, способных фотоокислять воду. Достройка новой фотосистемы к старой фотосистеме I позволяет оторвать электрон от молекулы воды и «подбросить» его на более высокий уровень, а дальше он уже может использоваться в энергетических превращениях фотосистемы I. Как конкретно поэтапно формировалась фотосистема II, пока неизвестно, ибо современные цианобактерии — это результат длительной эволюции.
Некоторые представления о функционировании первичного круговорота можно получить на примере изучения современных цианобактериальных сообществ, развивающихся «на задворках» биосферы: в термальных источниках, соленых морских лагунах или на берегах мелководных сильно засоленных озер. Следуя работе Г. А. Заварзина [1984], опишем, в качестве примера, сообщество, развивающееся в лагунах юго-восточной части Сиваша. Повышенная соленость этих мелководных водоемов глубиной несколько десятков сантиметров ограничивает развитие высшей растительности и эукариот вообще. Дно таких водоемов покрыто кожистой пленкой розоватого или серого цвета. Основной формообразующий компонент сообщества — это синезеленые водоросли рода микроколеус. Их трихомы переплетены в виде канатов, заключены в общее слизистое влагалище и даже способны мигрировать по вертикали. Самый верхний слой составляют слизистые бесцветные бактерии, они являются аэробными органотрофами. Днем под их слоем образуются пузырьки фотосинтетического кислорода. Находящийся под ним слой синезеленых водорослей имеет зеленую окраску. Он представляет собой плотную пленку толщиной несколько миллиметров. Под этим слоем находится оливковый слой трихомных бактерий. Под ним, в анаэробной зоне, где развиваются анаэробные бактерии, идет образование карбонатных материалов и гипса. Еще ниже — слой образования сероводорода и выпадения черного сульфида железа.
Автору этих строк довелось обнаружить цианобактериальное сообщество в Средней Азии, в пустыне, недалеко от г. Бухары. Около искусственного пресноводного оз. Тадакуль, за его насыпными берегами, есть места скопления соленой воды и солончаки. В соленых мелких лужах, берега которых покрыты коркой соли, очень чистая, прозрачная вода. Их дно покрыто серо-желтым слоем. Это — верхняя, бактериальная часть мата, похожая на войлок, с переплетением нитей толщиной 2–3 мм. Под ней — удивительно яркий, зеленый слой цианобактерий толщиной не более 1 мм. Еще ниже — сероватый 2–3-миллиметровый слой анаэробов, а затем — черная зона с запахом сероводорода. Видимо, так выглядела первичная биосфера.
Применение микроэлектродной техники показывает резкую вертикальную стратификацию метаболизма в таком цианобактериальном мате. Например, практически весь падающий свет может поглощаться слоем синезеленых водорослей около 0,3 мм. Здесь же и происходят процессы синтеза биомассы. Ниже идет деструкция органического вещества. И, что особенно важно отметить, она протекает анаэробно, без затраты O2. Это как раз и соответствует первичным условиям фотосинтеза и деструкции, которые имели место в бескислородной среде.
Остановимся чуть подробнее на другой части работы биотического цикла — на процессах деструкции. Как известно, в условиях отсутствия кислорода основным источником энергии для гетеротрофного звена является процесс брожения, или субстратного фосфорилирования. Замыкание биотического круговорота привело к тому, что органический углерод стал связываться во все более трудные для сбраживания формы в виде полимеров (белков, полисахаридов, нуклеиновых кислот и других). Часть соединений биотического или абиогенного происхождения оказалась вообще недоступной для сбраживания. К ним относятся прежде всего алифатические и ароматические углеводороды, составляющие основу нефти, сохранившейся до нашего времени.
В целом этот этап развития круговорота оказался «перекошенным» в пользу синтетической ветви, особенно по энергетике (второй энергетический кризис). Следующий шаг в развитии биотического круговорота и заключался в использовании побочного «ядовитого» продукта фотосинтеза — кислорода в цепях дыхания, т. е. в активизации звена деструкции, необходимой для обеспечения баланса круговорота.
Факт, что молекулярный кислород атмосферы имеет биогенное происхождение, в настоящее время почти не вызывает сомнений. Кислород является результатом нового этапа фотосинтеза, при котором в качестве донора электронов (протонов) служит вода. Усиление синтетической половины первичного биотического круговорота привело к связыванию углерода в биомассе автотрофов, к снижению концентрации CO2; в воде. Это могло вызывать защелачивание воды, а следовательно, и выпадение в осадок солей двухвалентных элементов типа кальция, т. е. еще большее обеднение гидро- и атмосферы углеродом. Гетеротрофное звено и с ним звено редукции явно отставали от звена синтеза. В атмосфере накапливался сильнейший яд — окислитель для существ, развивающихся в восстановительной атмосфере. Несомненно, что на этом этапе эволюция должна была быть связана с адаптацией к кислороду. Иначе — смерть и самим фотосинтетикам, его производящим. И мы можем проследить (теперь уже имеется достаточно данных палеонтологии, биохимии и физиологии), как живые организмы блестяще справились с этой эволюционной задачей. Сильнейший токсикант удалось не только обезвредить, но и явно использовать для ликвидации узкого места круговорота: в отборе получили преимущество те организмы, которые сумели использовать молекулярный кислород, прежде всего для своих энергетических потребностей.
Так как цианобактерий считаются первыми производителями кислорода, то им первым и должны были понадобиться защитные механизмы от его токсичности. Как конкретно происходило превращение нейтрализующих реакций в полезные, идущие с использованием молекулярного кислорода, остается неясным. Достаточно правдоподобные объяснения имеются, мы не будем их обсуждать детально (оставим это для субстратного подхода). Рассмотрим здесь только канву энергетических приобретений.
Накопление кислорода означало, что появился «идеальный» конечный акцептор электронов, т. е. открылась возможность передавать ему электроны с восстановленных при фотосинтезе органических соединений. Правда, разрыв по энергетике между донорами и акцептором был велик и ничем не заполнен. Развитие и совершенствование цепи переносчиков и ее связи с энергодающими системами клетки было основным направлением действия отбора в энергетическом смысле.
Чтобы наилучшим способом использовать открывшиеся энергетические возможности, связанные с переносом водорода («горячих» электронов) с субстрата на молекулярный кислород, гетеротрофным клеткам пришлось решать, как минимум, три сложные задачи. Во-первых, полностью отщепить водород от имевшегося органического субстрата. Это было сделано путем развития цикла трикарбоновых кислот (ЦТК). Во-вторых создать систему переноса электронов по электрохимическому градиенту, которую мы называем «дыхательная цепь». В-третьих, связать эту систему электронного транспорта с фосфорилированием, т. е. с образованием единой энергетической валюты — АТФ.
Отметим два очень существенных обстоятельства. Во-первых, окислительное фосфорилирование сходно с фотофосфорилированием, по крайней мере по энергетическому выходу они близки. И таким образом, гетеротрофное звено подтянулось до уровня фототрофного по энергетике, а биотический круговорот на основе прокариот сбалансировался. Во-вторых, для прокариот, сформировавшихся в «докислородную» эпоху, задача обезвреживания кислорода так и осталась одной из самых сложных. К примеру, у тех же цианобактерий фотосинтез и дыхание разобщены во времени, тогда как у эукариот-фотосинтетиков, сформировавшихся позднее, во времена кислородной эры, эти процессы могут идти одновременно из-за их пространственного разделения. Кроме того, у прокариот степень сопряжения электронного транспорта в дыхательной цепи с окислительным фосфорилированием невелика. У наиболее продвинутых в эволюционном отношении аэробных форм она достигает лишь 1/3 от эффективности сопряжения у эукариот. (Измерения проводятся по величине P/O, т. е. по числу потребленных молекул неорганического фосфата, или образовавшихся молекул АТФ, на один поглощенный атом кислорода. Для эукариот P/O = 3, для прокариот — около 1.)
Зато в биохимическом отношении прокариотные организмы отличаются громадным разнообразием: и по конечным акцепторам электронов, и по использованию разнообразных субстратов органической и неорганической природы, и по составу промежуточных переносчиков в дыхательных цепях. Действительно, поразителен тот факт, что в царстве прокариот имеется практически все, что достигнуто жизнью в области биосинтетических процессов. И «если бы мерой эволюционного прогресса служили только биосинтетические возможности, то многоклеточных животных следовало бы считать гораздо менее продвинутыми по пути эволюции, чем хемоавтотрофных бактерий...» [Маргелис, 1983, с. 131].
Можно сказать, что в настоящее время прокариоты заняли все те «пустые» и трудные для жизни места, которые эукариоты не смогли занять прежде всего из-за ограниченности метаболических возможностей. Но магистральное направление эволюции, биологический прогресс по вкладу в биотическии круговорот оказались на стороне эукариот.