Основные генетические процессы. Биосинтез белка

Функциональные возможности генетического материала (способность сохраняться и воспроизводиться при смене клеточных поколений, реализовываться в онтогенезе и в ряде случаев изменяться) связаны с протеканием четырех генетических процессов – репликакции и репарации ДНК, биосинтеза белка и генетической рекомбинации.

Процесс генетической информации в клетках от ДНК через различные виды РНК к полипептидам и белкам называют экспрессией (проявлением) генов. Образующиеся при биосинтезе белка полипептидные цепи определяют признаки клеток, формирую белковые структуры или управляя процессами обмена веществ в качестве ферментов.

Репликация ДНКили генетическое удвоение ДНК происходит перед каждым нормально протекающим делением у эукариот (ДНК ядер, митохондрий, пластид), перед каждым делением прокариотических клеток и размножением ДНК-вирусов. Репликация является необходимой предпосылкой для сохранения имеющейся наследственной информации в ряду последовательных поколений клеток и организмов. Синтез макромолекул ДНК, а также РНК и белков происходит по типу матричного процесса, т.е. новые молекулы синтезируется в точном соответствии с химической структурой уже существующих молекул. Во время репликации ДНК каждая из двух ее цепей служит матрицей для образования новой цепи. В качестве предшественников (мономеров) для построения новой ДНК в клетке синтезируются трифосфаты четырех дезоксирибонуклеозидов: дАТФ, дТТФб дЦТФб дГТФ. Репликация ДНК начинается с раскручивания двойной спирали и разделения ее цепей за счет ферментативного разрыва водородных связей между спаренными азотистыми основаниями. Фермент ДНК-полимераза движется вдоль каждой из цепей, связывая между собой нуклеотиды, комплементарные нуклеотидам старой цепи.

Репарация ДНК– способность молекул ДНК к самовосстановлению, «исправлению» возникающих в ее цепях изменений. В восстановлении участвуют не менее 20 белков: узнающих измененные участки ДНК и удаляющих их из цепи, восстанавливающих правильную последовательность нуклеотидов и сшивающих восстановленный фрагмент с остальной молекулой ДНК.

Биосинтез белка– система сложных и последовательных реакций, в котором участвуют молекулы ДНК, все типы РНК, АТФ, ферменты, аминокислоты. Процесс состоит из нескольких этапов.

1. Транскрипция – синтез иРНК на матрице одной из цепей ДНК, т.е. переписывание информации, хранящейся в молекуле ДНК.На ДНК-матрице образуется три вида РНК: информационная, или матричная (иРНК), транспортная (тРНК) и рибосомная (рРНК). Синтез иРНК состоит из фазы инициации, элонгации и терминации. Образующаяся «сырая» иРНК состоит из экзонов (кодирующих участков) и интронов (некодирующих участков). Далее процесс созревания иРНК подразумевает удаление из нее интронов – процессинг и сшивку экзонов – сплайсинг. В виде иРНК генетическая информация для синтеза полипептида передается от ДНК к рибосомам; тРНК доставляют к рибосомам аминокислоты (каждую аминокислоту доставляет особый, именно для нее предназначенный вид тРНК). Главным компонентом рибосом является рРНК.

2. Трансляция – процесс перевода генетической информации иРНК в последовательность аминокислот в полипептиде.Процесс осуществляется в рибосомах на иРНК, в ней в виде последовательности нуклеотидов содержится генетический код о белковых молекулах.

В состав белков входит 20 аминокислот, их кодируют четыре вида нуклеотидов (аденин А, гуанин Г, цитозин Ц, урацил У) по три.

1 аминокислота = 3 нуклеотида

Три нуклеотида, образующих кодовый знак, называют триплетом. Например, ААА – лизин, АГА – аргинин, ГЦУ – аланин. Триплеты в молекуле РНК называют кодонами, а комплементарные им триплеты молекул тРНК – антидодонами. Из 64 триплетов 3 не кодируют аминокислоты – это стоп-сигналы (УАА, УАГ, УГА).

Многие аминокислоты кодируются более чем одним кодоном (АГУ, АГЦ, УЦУ и др. кодируют серин); в этом смысле код является вырожденным.

Генетический код одинаков, т.е. универсален для всех живых организмов (вирусов, бактерий, грибов, растений, животных) – во всех группах он слагается из одних тex же дезоксирибонуклеотидов, включающих два пуриновых осованиния (аденин А и гуанин Г) и два пиримидиновьгх (цитозин Ц и тимин Т).

Во всем органическом мире строго соблюдаются закономерности, называемые правила Чаграффа:

1. Сумма пуриновых нуклеотидов равна сумме пиримидиновых
нуклеотидов: (А + Г = Т + Ц).

2. Содержание аденина равно содержанию тимина: А = Т.

3. Содержание гуанина равно содержанию цитозина: Г = Ц.

4. Суммы Г + Т и А + Ц равны, т.е. Г + Т = А + Ц.

5. Содержание Г + Ц и А + Т может варьировать в довольно значительных пределах.

Основные законы генетики

Первый закон Менделя (закон единообразия): при скрещивании гомозиготных особей, все гибриды первого поколения едино­образны. Например, при скрещивании растений с желтыми семенами АА и растений с зелеными семенами аа, гибриды первого поколения оказываются все с желтыми семенами Аа.

Второй закон Менделя (закон расщепления): при моногибридном скрещивании гетерозиготных особей во втором поколении наблюдается расщепление по фенотипу 3:1 и по генотипу 1:2:1.

Третий закон Менделя (закон независимого наследования): гены разных аллельных пар и соответствующие им признаки наследуются независимо.

Взаимодействие аллельных генов осуществляется в трех формах: полное доминирование, неполное доминирование и независимое проявление (кодоминирование – пример формирование групп крови человека).

Взаимодействие неаллельных генов подразделяют на основные формы: комплементарность, эпистаз, полимерию.

Закон Моргана (закон сцепленного наследования): гены, локализованные в одной хромосоме наследуются сцеплено. Признаки, гены которых находятся в половых хромосомах, наследуются сцеплено с полом (гемофилия – несвертываемость крови, дальтонизм – неспособность различать красный и зеленый цвета и др.).

Анализ поведения генов свободно скрещива­ющейся популяции характеризует закон Харди-Вайнберга: любая популяция, в которой распределены пары генов А и а, соответствует соотношению р2 + 2pq + q2, находится в генетическом равновесии (р2 – число гомозиготных особей по доминантному гену с гонотипом АА; q2 – число гомозиготных особей по рецессивному гену с гонотипом аа; pq – число гетерозиготных особей). Доли этих генов в последующих поколениях будут оставаться постоянными, если их не изменит отбор, мутационный процесс или какая-либо случайность.

Наши рекомендации