Философские работы
Научная деятельность
Основные научные работы Оствальда посвящены развитию теории электролитической диссоциации. Обнаружил связь электропроводности растворов кислот со степенью их электролитической диссоциации (1884). Дал способ определения основности кислот по электропроводности их растворов (1887—1988). Установил закон разбавления Оствальда (1888). Впервые описал явление Оствальдовского созревания
. Предложил рассматривать реакции аналитической химии как взаимодействия между ионами (1894). Оствальд изучал также вопросы химической кинетики и катализа; разработал основы каталитического окисления аммиака. В 1909 году Оствальд стал лауреатом Нобелевской премии по химии «за изучение природы катализа и основополагающие исследования скоростей химических реакций».Оствальд был одним из крупнейших организаторов науки своего времени. Он стал приемником Густава Генриха Видеманна (1826-1899) по возглавляемой последним с 1871 по 1887 кафедре физической химии при Лейпцигском университете. Оствальд основал при том же университете первый в мире Физико-химический институт; стоял у истоков Германского электрохимического общества. В 1887 году Оствальд вместе с Я. Вант-Гоффом основал «Журнал физической химии». С 1889года он начал издание серии «Классики точных наук» (Ostwald’s Klassiker der exakten Wissenschaften) из нескольких сотен небольших книг, содержащих классические работы по математике, физике и химии. Созданная при участии Оствальда организация «Мост» (1911) ставила своей целью разворачивание международного сотрудничества в сфере библиографии и документации с целью облегчить ученым всех стран знакомство с литературой по их специальности.
В 1909 г. Оствальду была присуждена Нобелевская премия по химии «в знак признания проделанной им работы по катализу, а также за исследования основных принципов управления химическим равновесием и скоростями реакции».
Философские работы
Оствальд — автор «энергетической» теории, одной из разновидностей «физического» идеализма. Оствальд считал единственной реальностью энергию, рассматривалматерию
как форму проявления энергии.Еще в 1890 году Вильгельм Оствальд, нобелевский лауреат 1909 года, показал, что электрические токи в живых тканях могут быть вызваны ионами, которые перемещаются через клеточную мембрану. Основные принципы работы ионных каналов и роль ионов в работе нервной системы установлены в 1950-1960-е годы. В 1963 году за открытия в этой области британским исследователям Алану Ходжкину и Эндрю Хаксли присудили Нобелевскую премию, но молекулярные механизмы ионного транспорта оставались неясными до последнего времени.
Примерно в середине XVIII века мышечное сокращение стало предметом экспериментального изучения многих ученых. Швейцарский ученый А. Галлер в ряде опытов показал, что скелетные мышцы, мышцы желудка, сердечная мышца отвечают на прямое механическое, химическое и электрическое раздражение. Когда соответствующая мышца вне организма и отделена от нервов.
Луиджи Гальвани очень удивился, наблюдая сокращения лягушачьей лапки, к которой подвили контакт от электрической машины. Это можно объяснить тем, что до сего момента раздражающее действие наблюдали только при непосредственном контакте заряженного тела с нервом или мышцей. Он попадает в руки знаменитому физику и профессору университета в Павии Алессандро Вольта. Вольта показал, что не мышца разряжается в нерв, а нерв возбуждается и передает что-то мышце. Это вызвало у Вольта сомнение не только в теоретической правоте Гальвани, но и в самом существовании "живого электричества".
Еще в 1890 году Вильгельм Оствальд, который продолжал заниматься полупроницаемыми искусственными пленками предположил, что полупроницаемость может быть причиной не только осмоса, но и электрических явлений. Осмос возникает тогда, когда пленка пропускает маленькие молекулы воды и не пропускает большие молекулы сахара. Но ведь ионы могут быть тоже разно величены! Тогда мембрана будет пропускать ионы только одного знака, например, положительного.
Оствальд объединил формулу Нернста для диффузионного потенциала возникающего на границе двух растворов с концентрациями электролита и знание о полупроницаемых мембранах. Он предположил, что свойствами такой мембраны объясняются потенциалы мышц и нервов и удивительное действие электрических органов рыб.
Решающий шаг сделал ученый школы Дюбуа-Раймонда Юлиус Бернштейн. Он объяснил электрические свойства мышц и нервов не устройством этих органов в целом, а свойствами клеток, из которых состоят все ткани и органы. Наконец-то, был прямо указан "виновник", создающий "животное электричество", - клеточная мембрана, а "оружие" - перенос ионов. Таким образом, в гипотезе Бернштейна объединяются электрохимия и клеточная теория. Юлиус Бернштейн считается основателем мембранной теории биопотенциалов.