Кислотно-основные индикаторы
Точка эквивалентности при реакции нейтрализации не сопровождается каким-либо внешним изменением, поэтому для определения конца реакции применяются специальные индикаторы. В точке эквивалентности происходит изменение рН раствора. Поэтому индикаторы, применяемые при кислотно-основном титровании, представляют собой органические соединения, окраска которых меняется в зависимости от концентрации ионов водорода в растворе. Это так называемые кислотно-основные индикаторы, или рН-индикаторы. Для объяснения изменения окраски индикаторов имеется несколько теорий.
Теория Оствальда была предложена в 1891 г. Согласно этой теории, каждый рН-индикатор должен диссоциировать как слабая кислота или слабое основание; кроме того, один из ионов, образующихся при диссоциации индикатора, должен быть окрашенным, причем его окраска должна быть другая, чем окраска недиссоциированной молекулы.
Представим себе, что индикатор Hind обладает свойствами слабой кислоты и диссоциирует по уравнению:
Hind ⇆ Н+ + Ind¯
Поскольку индикатор является слабой кислотой, при небольших значениях рН он будет находиться в растворе в недиссоциированном состоянии и иметь окраску, соответствующую цвету недиссоциированных молекул. Если прибавить к водному раствору индикатора немного сильного основания, например NaOH, ионы ОН¯ будут соединяться с ионами Н+ индикатора, образуя молекулу воды. Вследствие изменения концентрации ионов Н+ равновесие диссоциации индикатора сдвигается вправо, в сторону образования свободных ионов. При добавлении некоторого количества щелочи концентрация недиссоциированных молекул Hind будет так мала, что их окраска станет незаметной, и раствор окрасится в другой цвет — цвет свободных ионов Ind¯.
Прибавление к полученному раствору кислоты приведет к повышению концентрации ионов Н+ и сдвигу равновесия влево, в сторону образования недиссоциированных молекул. В связи с этим исчезнет окраска, свойственная ионам Ind¯, и появится окраска недиссоциированных молекул Hind.
Хромофорная теория. В действительности механизм изменения окраски индикаторов более сложен, чем предполагал Оствальд. Позднейшие исследования ряда ученых показали, что окраска органических соединений (а индикаторы являются сложными органическими соединениями) обусловлена наличием в его молекуле определенных групп, называемых хромофорами. К хромофорным группам относятся
· Азогруппа —N=N—,
· нитрогруппа
· нитрозогруппа —N=О,
· хиноидная группировка и др.
Кроме хромофоров, в окраске органических соединений грают важную роль ауксохромы. Это группы, присутствие которых в молекуле органического соединения усиливает его окраску. К ауксохромам относятся группы —NH,
—ОН и др.
Согласно хромофорной теории, окраска органических соединений зависит от строения молекулы. Вследствие внутримолекулярной перегруппировки изменяется строение молекулы индикатора, а, следовательно, меняется окраска соединения. Бензольная система переходит в хиноидную:
и т. Д.
Азогруппа —N=N— в определенных условиях переходит в группу =N–NH– и т. Д. Эти перегруппировки внутри молекулы оказываются причиной изменения окраски индикатора.
Превращение таутомерных форм друг в друга у индикаторов является обратимым процессом. В растворе любого индикатора присутствуют различные его формы, находящиеся в равновесии друг с другом.
Изменение строения индикаторов происходит при добавлении к растворам кислот или щелочей, т. Е. при изменении концентрации ионов водорода в растворах. Это происходит потому, что хотя индикаторы не являются электролитами, как предполагал Оствальд, они могут диссоциировать с образованием ионов Н+ (или ОН¯),
Таким образом, в растворе индикатора, наряду с равновесием между таутомерными формами (1) существует равновесие диссоциации (2):
RH⇆(1)HR' ⇆(2)H++R′¯
Радикалы R и R' отличаются друг от друга внутренним строением, они содержат разные хромофорные группы и формы RH и R'H отличаются окраской. Причем окраска иона R'¯ такая же, как и молекулы HR', так как при диссоциации внутреннее строение не изменяется.
Прибавление щелочи вызывает уменьшение концентрации ионов Н+. Вследствие этого происходит сдвиг равновесия слева направо и превращение формы RH в форму HR', а, следовательно, изменение окраски.
Прибавление кислоты вызывает увеличение концентрации ионов Н+, равновесие сдвигается влево, происходит превращение формы HR' в RH и изменение окраски.
В качестве примера приведем изменение строения и окраски индикаторов фенолфталеина:
и метилового оранжевого:
В растворе индикаторов, как указывалось выше, существует равновесие. В кислой среде в растворе находится таутомерная форма, которую мы назовем кислотной формой, а в щелочной — щелочная форма. Эти формы имеют различную окраску.
Интервал перехода окраски индикатора у разных индикаторов находится при разных концентрациях ионов водорода. Область значения рН раствора, в которой происходит заметное изменение окраски индикатора называется областью перехода индикатора. Например, область перехода индикатора метилового оранжевого находится в пределах рН от 3,1 до 4,4. При рН>4,4 метиловый оранжевый— желтый, при рН<3,1— розовый, в интервале от рН 3,1 до рН 4,4 окраска его постепенно изменяется из розовой в желтую. Другой индикатор—фенолфталеин при рН<8 бесцветный, в интервале рН от 8,0 до 10,0 окраска из бледно-розовой постепенно переходит в ярко-малиновую. Область перехода индикатора метилового красного от рН 4,4 до рН 6,2.. При рН<4,4 этот индикатор красный, при рН>6,2 — желтый.
В каждом случае титрование заканчивается в момент резкого изменения окраски индикатора. Значение рН, при котором происходит наиболее резкое изменение индикатора, называется показателем титрования. Следовательно, показатель титрования есть то значение рН, от которого мы титруем раствор с данным индикатором. Так, показатель титрования для фенолфталеина примерно равен 9,0, т. Е. при этом значении рН мы особенно четко замечаем изменение окраски и заканчиваем титрование. Показатель титрования метилового оранжевого равен 4,0.
Так как конец реакции определяется с помощью индикаторов, необходимо для каждого определения праильно выбрать индикатор, так чтобы его показатель титрования был как можно ближе к рН точки эквивалентности в данном определении. Необходимо помнить, что если определяют содержание какого-либо вещества по методу нейтрализации, титр рабочего раствора должен быть установлен с тем индикатором, с каким будет производиться определение.
Необходимо помнить также, что на показания индикаторов влияют ряд факторов:
1) температура—с увеличением температуры у индикатора меняется область перехода и может меняться интенсивность окраски, поэтому все определения по методу нейтрализации проводят при комнатной температуре:
2) посторонние примеси — заметное количество нейтральных солей, веществ, легко переходящих в коллоидное состояние, некоторых органических растворителей искажают результаты титрования;
3) количество индикатора — чем больше индикатора, тем труднее заметить изменение окраски.
Из всего сказанного можно сделать вывод: