Свойства элементов подгруппы железа

Атомный номер Название Электронная конфигурация   r г/см3 t°пл. °C t°кип. °C ЭО Атомный радиус, нм Степень окисления
Железо Fe [Ar] 3d64s2 7,87 1,64 0,128 +2,+3
Кобальт Co [Ar] 3d74s2 8,9 1,7 0,125 +2,+3
Никель Ni [Ar] 3d8 4s2 8,9 1,75 0,124 +1,+2,+3,+4

Получение
металлов подгруппы железа

Восстановлением из оксидов углём или оксидом углерода (II)

FeO + C ® Fe + CO

Fe2O3 + 3CO ® 2Fe + 3CO2

NiO + C ® Ni + CO

Co2O3 + 3C ® 2Co + 3CO

Fe

d- элемент VIII группы; порядковый номер – 26; атомная масса – 56; (26p11; 30 n01), 26ē

Свойства элементов подгруппы железа - student2.ru 1s22s22p63s23p63d64s2

Металл средней активности, восстановитель.

Основные степени окисления - +2, +3

Свойства элементов подгруппы железа - student2.ru

Железо и его соединения

Химические свойства

1) На воздухе железо легко окисляется в присутствии влаги (ржавление):

4Fe + 3O2 + 6H2 O ® 4Fe(OH)3

Накалённая железная проволока горит в кислороде, образуя окалину - оксид железа (II,III):

3Fe + 2O2 ® Fe3O4

2) При высокой температуре (700–900°C) железо реагирует с парами воды:

3Fe + 4H2O –t°® Fe3O4 + 4H2­

3) Железо реагирует с неметаллами при нагревании:

2Fe + 3Br2t°® 2FeBr3

Fe + S –t°® FeS

4) Железо легко растворяется в соляной и разбавленной серной кислотах:

Fe + 2HCl ® FeCl2 + H2­

Fe + H2SO4(разб.) ® FeSO4 + H2­

В концентрированных кислотах–окислителях железо растворяется только при нагревании

2Fe + 6H2SO4(конц.) –t°® Fe2(SO4)3 + 3SO2­ + 6H2O

Fe + 6HNO3(конц.) –t°® Fe(NO3)3 + 3NO2­ + 3H2O

(на холоде концентрированные азотная и серная кислоты пассивируют железо).

5) Железо вытесняет металлы, стоящие правее его в ряду напряжений из растворов их солей.

Fe + CuSO4 ® FeSO4 + Cu¯

Соединения двухвалентного железа

Гидроксид железа (II)

Образуется при действии растворов щелочей на соли железа (II) без доступа воздуха:

FeCl + 2KOH ® 2KCl + Fе(OH)2¯

Fe(OH)2 - слабое основание, растворимо в сильных кислотах:

Fe(OH)2 + H2SO4 ® FeSO4 + 2H2O

Fe(OH)2 + 2H+ ® Fe2+ + 2H2O

При прокаливании Fe(OH)2 без доступа воздуха образуется оксид железа (II) FeO:

Fe(OH)2t°® FeO + H2O

В присутствии кислорода воздуха белый осадок Fe(OH)2, окисляясь, буреет – образуя гидроксид железа (III) Fe(OH)3:

4Fe(OH)2 + O2 + 2H2O ® 4Fe(OH)3

Соединения железа (II) обладают восстановительными свойствами, они легко превращаются в соединения железа (III) под действием окислителей:

10FeSO4 + 2KMnO4 + 8H2SO4 ® 5Fe2(SO4)3 + K2SO4 + 2MnSO4 + 8H2O

6FeSO4 + 2HNO3 + 3H2SO4 ® 3Fe2(SO4)3 + 2NO­ + 4H2O

Соединения железа склонны к комплексообразованию (координационное число=6):

FeCl2 + 6NH3 ® [Fe(NH3)6]Cl2

Fe(CN)2 + 4KCN ® K4[Fe(CN)6](жёлтая кровяная соль)

Качественная реакция на Fe2+

При действии гексацианоферрата (III) калия K3[Fe(CN)6] (красной кровяной соли) на растворы солей двухвалентного железа образуется синий осадок (турнбулева синь):

3FeSO4 + 2K3[Fe(CN)6] ® Fe3[Fe(CN)6]2¯ + 3K2SO4

3Fe2+ + 3SO42- +6K+ + 2[Fe(CN)6]3- ® Fe3[Fe(CN)6]2¯ + 6K+ + 3SO42-

3Fe2+ + 2[Fe(CN)6]3- ® Fe3[Fe(CN)6]2¯

Соединения трёхвалентного железа

Оксид железа (III)

Образуется при сжигании сульфидов железа, например, при обжиге пирита:

4FeS2 + 11O2 ® 2Fe2O3 + 8SO2­

или при прокаливании солей железа:

2FeSO4t°® Fe2O3 + SO2­ + SO3­

Fe2O3 - основной оксид, в незначительной степени проявляющий амфотерные свойства

Fe2O3 + 6HCl –t°® 2FeCl3 + 3H2O

Fe2O3 + 6H+t°® 2Fe3+ + 3H2O

Fe2O3 + 2NaOH + 3H2O –t°® 2Na[Fe(OH)4]

Fe2O3 + 2OH- + 3H2O ® 2[Fe(OH)4]-

Гидроксид железа (III)

Образуется при действии растворов щелочей на соли трёхвалентного железа: выпадает в виде красно–бурого осадка

Fe(NO3)3 + 3KOH ® Fe(OH)3¯ + 3KNO3

Fe3+ + 3OH- ® Fe(OH)3¯

Fe(OH)3 – более слабое основание, чем гидроксид железа (II).

Это объясняется тем, что у Fe2+ меньше заряд иона и больше его радиус, чем у Fe3+, а поэтому, Fe2+ слабее удерживает гидроксид-ионы, т.е. Fe(OH)2 более легко диссоциирует.

В связи с этим соли железа (II) гидролизуются незначительно, а соли железа (III) - очень сильно. Для лучшего усвоения материалов этого раздела рекомендуется просмотреть видеофрагмент (доступен только на CDROM). Гидролизом объясняется и цвет растворов солей Fe(III): несмотря на то, что ион Fe3+ почти бесцветен, содержащие его растворы окрашены в жёлто-бурый цвет, что объясняется присутствием гидроксоионов железа или молекул Fe(OH)3, которые образуются благодаря гидролизу:

Fe3+ + H2O « [Fe(OH)]2+ + H+

[Fe(OH)]2+ + H2O « [Fe(OH)2]+ + H+

[Fe(OH)2]+ + H2O « Fe(OH)3 + H+

При нагревании окраска темнеет, а при прибавлении кислот становится более светлой вследствие подавления гидролиза. Fe(OH)3 обладает слабо выраженной амфотерностью: он растворяется в разбавленных кислотах и в концентрированных растворах щелочей:

Fe(OH)3 + 3HCl ® FeCl3 + 3H2O

Fe(OH)3 + 3H+ ® Fe3+ + 3H2O

Fe(OH)3 + NaOH ® Na[Fe(OH)4]

Fe(OH)3 + OH- ® [Fe(OH)4]-

Соединения железа (III) - слабые окислители, реагируют с сильными восстановителями:

2Fe+3Cl3 + H2S-2 ® S0 + 2Fe+2Cl2 + 2HCl

Качественные реакции на Fe3+

1) При действии гексацианоферрата (II) калия K4[Fe(CN)6] (жёлтой кровяной соли) на растворы солей трёхвалентного железа образуется синий осадок (берлинская лазурь):

4FeCl3 +3K4[Fe(CN)6] ® Fe4[Fe(CN)6]3¯ + 12KCl

4Fe3+ + 12Cl- + 12K+ + 3[Fe(CN)6]4- ® Fe4[Fe(CN)6]3¯ + 12K+ + 12Cl-

4Fe3+ + 3 [Fe(CN)6]4- ® Fe4[Fe(CN)6]3¯

2) При добавлении к раствору, содержащему ионы Fe3+ роданистого калия или аммония появляется интенсивная кроваво-красная окраска роданида железа(III):

FeCl3 + 3NH4CNS « 3NH4Cl + Fe(CNS)3

(при взаимодействии же с роданидами ионов Fe2+ раствор остаётся практически бесцветным).

Кобальт и его соединения

По химической активности кобальт уступает железу. Он легко растворяется в кислотах - окислителях и медленно в обычных кислотах:

Co + 2HCl ® CoCl2 + H2­

В простых соединениях у кобальта наиболее устойчива степень окисления +2, в комплесных – +3. Водные растворы солей кобальта (II) обычно окрашены в розовый цвет.

Гидроксид кобальта (II)

Образуется при действии щелочей на соли кобальта (II):

CoSO4 + 2KOH ® K2SO4 + Co(OH)2¯

На воздухе розовый осадок Co(OH)2 постепенно буреет, превращаясь в гидроксид кобальта (III):

4Co(OH)2 + O2 + 2H2O ® 4Co(OH)3

Сo(OH)2 - слабое основание, растворимое в сильных кислотах:

Co(OH)2 + 2HCl ® CoCl2 + 2H2O

При прокаливании Co(OH)2 образует оксид кобальта (II) CoO:

Co(OH)2t°® CoO + H2O

Cоединения кобальта склонны к комплексообразованию (координационное число=6):

Co(OH)2 + 6NH3 ® [Co(NH3)](OH)2

Никель и его соединения

Никель легко растворяется в разбавленной азотной кислоте и медленно в соляной и серной кислотах

Ni + 2HCl ® NiCl2 + H2­

Ион Ni2+ в водных растворах имеет зелёную окраску. Для никеля наиболее характерна степень окисления +2. Оксид и гидроксид никеля проявляют основной характер.

NiO + H2SO4t°® NiSO4 + H2O

NiCl2 + 2NaOH –t°® Ni(OH)2¯(зелёный) + 2NaCl

Ni(OH)2 + H2SO4 ® NiSO4 + 2H2O

Соединения двухвалентного никеля могут давать комплексы с аммиаком:

Ni(OH)2 + 6NH2 ® [Ni(NH3)6](OH)2

ПОДГРУППА МЕДИ

Подгруппа меди – побочная подгруппа I группы

Свойства элементов подгруппы меди

Атомный номер Название Электронная конфигурация   r г/см3 t°пл. °C t°кип. °C ЭО Атомный радиус, нм Удельная злектро- проводность м,мм-2,ом-1 Степень окисления
Медь Cu [Ar] 3d104s1 8,96 1,9 0,127 58,1 +1,+2
Серебро Ag [Kr] 4d105s1 10,5 1,9 0,144 61,0 +1
Золото Au [Xe]4f145d106s1 19,3 2,4 0,144 41,3 +1,+3

Физические свойства

1. Высокие значения плотности, температур плавления и кипения.

2. Высокая тепло- и электропроводность.

Химические свойства

Химическая активность небольшая, убывает с увеличением атомного номера.

Медь и её соединения

Получение

1. Пирометаллургия

CuO + C ® Cu + CO

CuO + CO ® Cu + CO2

2. Гидрометаллургия

CuO + H2SO4 ® CuSO4 + H2O

CuSO4 + Fe ® FeSO4 + Cu

электролиз:

2CuSO4 + 2H2O ® 2Cu + O2­ + 2H2SO4
(на катоде) (на аноде)

Химические свойства

Взаимодействует с неметаллами при высоких температурах:

2Cu + O2t°® 2CuO

Cu + Ci2t°® CuCl2

Медь стоит в ряду напряжений правее водорода, поэтому не реагирует с разбавленными соляной и серной кислотами, но растворяется в кислотах – окислителях:

3Cu + 8HNO3(разб.) ® 3Cu(NO3)2 + 2NO­ + 2H2O

Cu + 4HNO3(конц.) ® Cu(NO3)2 + 2NO2­ + 2H2O

Cu + 2H2SO4(конц.) ® CuSO4 + SO2­ +2H2O

Сплавы меди с оловом - бронзы, с цинком - латуни.

Соединения одновалентной меди

Встречаются либо в нерастворимых соединениях (Cu2O, Cu2S, CuCl), либо в виде растворимых комплексов (координационное число меди – 2):

CuCl + 2NH3 ® [Cu(NH3)2]Cl

Оксид меди (I) - красного цвета, получают восстановлением соединений меди (II), например, глюкозой в щелочной среде:

2CuSO4 + C6H12O6 + 5NaOH ® Cu2O¯ + 2Na2SO4 + C6H11O7Na + 3H2O

Соединения двухвалентной меди

Оксид меди (II) - чёрного цвета. Восстанавливается под действием сильных восстановителей (например, CO) до меди. Обладает основным характером, при нагревании растворяется в кислотах:

CuO + H2SO4t°® CuSO4 + H2O

CuO + 2HNO3t°® Cu(NO3)2 + H2O

Гидроксид меди (II) Cu(OH)2 - нерастворимое в воде вещество светло-голубого цвета. Образуется при действии щелочей на соли меди (II):

CuSO4 + 2NaOH ® Cu(OH)2¯ + Na2SO4

При нагревании чернеет, разлагаясь до оксида:

Cu(OH)2t°® CuO + H2O

Типичное основание. Растворяется в кислотах.

Cu(OH)2 + 2HCl ® CuCl2 + 2H2O

Cu(OH)2 + 2H+ ® Cu2+ + 2H2O

Растворяется в растворе аммиака с образованием комплексного соединения (координационное число меди – 4) василькового цвета (реактив Швейцера, растворяет целлюлозу):

Cu(OH)2 + 4NH3 ® [Cu(HN3)4](OH)2

Малахит Cu2(OH)2CO3. Искусственно можно получить по реакции:

2CuSO4 + 2Na2CO3 + H2O ® Cu2(OH)2CO3¯ + 2Na2SO4 + CO2­

Разложение малахита:

Cu2(OH)2CO3t°® 2CuO + CO2­ + H2O

Серебро и его соединения

Благородный металл, устойчивый на воздухе. При потускнении серебра происходит реакция Гепара:

4Ag + 2H2S + O2 ® 2Ag2S + 2H2O

В ряду напряжений находится правее водорода, поэтому растворяется только в кислотах - окислителях:

3Ag + 4HNO3(разб.) ® 3AgNO3 + NO­ + 2H2O

Ag + 2HNO3(конц.) ® AgNO3 + NO2­+ H2O

2Ag + 2H2SO4(конц.) ® Ag2SO4 + SO2­ + 2H2O

В соединениях серебро обычно проявляет степень окисления +1.

Растворимый нитрат серебра AgNO3 используется как реактив для качественного определения Cl-, Br-, I-:

Ag+ + Cl- ® AgCl¯ белый

Ag+ + Br- ® AgBr¯ светло-жёлтый

Ag+ + I- ® AgI¯ тёмно-жёлтый

(Способность этих осадков образовывать растворимые комплексные соединения уменьшаются в ряду AgCl – AgBr – AgI). На свету галогениды серебра постепенно разлагаются с выделением серебра.

При добавлении растворов щелочей к раствору AgNO3 образуется тёмно-коричневый осадок оксида серебра Ag2O:

2AgNO3 + 2NaOH ® Ag2O + 2NaNO3 + H2O

Осадки AgCl и Ag2O растворяются в растворах аммиака с образованием комплексных соединений (координационное число серебра – 2):

AgCl + 2NH3 ® [Ag(NH3)2]Cl

Ag2O + 4NH3 + H2O ® 2[Ag(NH3)2]OH

Аммиачные комплексы серебра взаимодействуют с альдегидами (реакция серебряного зеркала):

  O II   O II  
R – C + [Ag(NH3)2]OH ® R– C + Ag¯ + NH3­
  I H   I O NH4

Золото и его соединения

Золото - мягче Cu и Ag, ковкий металл; легко образует тончайшую фольгу; благородный металл, устойчив как в сухом, так и во влажном воздухе. Растворим только в смеси концентрированных соляной и азотной кислот ("царской водке"):

Au + HNO3 + 4HCl ® H[AuCl4] + NO­ + 2H2O

Реагирует с галогенами при нагревании:

2Au + 3Cl2 ® 2AuCl3

Соединения термически не очень устойчивы и разлагаются при нагревании с выделением металла. Комплексообразователь (комплексы золота (III) обладают координационными числами 4, 5 и 6).

ПОДГРУППА МАРГАНЦА

Подгруппа марганца

Наши рекомендации