Свойства элементов подгруппы железа
Атомный номер | Название | Электронная конфигурация | r г/см3 | t°пл. °C | t°кип. °C | ЭО | Атомный радиус, нм | Степень окисления |
Железо Fe | [Ar] 3d64s2 | 7,87 | 1,64 | 0,128 | +2,+3 | |||
Кобальт Co | [Ar] 3d74s2 | 8,9 | 1,7 | 0,125 | +2,+3 | |||
Никель Ni | [Ar] 3d8 4s2 | 8,9 | 1,75 | 0,124 | +1,+2,+3,+4 |
Получение
металлов подгруппы железа
Восстановлением из оксидов углём или оксидом углерода (II)
FeO + C ® Fe + CO
Fe2O3 + 3CO ® 2Fe + 3CO2
NiO + C ® Ni + CO
Co2O3 + 3C ® 2Co + 3CO
Fe
d- элемент VIII группы; порядковый номер – 26; атомная масса – 56; (26p11; 30 n01), 26ē
1s22s22p63s23p63d64s2 |
Металл средней активности, восстановитель.
Основные степени окисления - +2, +3
Железо и его соединения
Химические свойства
1) На воздухе железо легко окисляется в присутствии влаги (ржавление):
4Fe + 3O2 + 6H2 O ® 4Fe(OH)3
Накалённая железная проволока горит в кислороде, образуя окалину - оксид железа (II,III):
3Fe + 2O2 ® Fe3O4
2) При высокой температуре (700–900°C) железо реагирует с парами воды:
3Fe + 4H2O –t°® Fe3O4 + 4H2
3) Железо реагирует с неметаллами при нагревании:
2Fe + 3Br2 –t°® 2FeBr3
Fe + S –t°® FeS
4) Железо легко растворяется в соляной и разбавленной серной кислотах:
Fe + 2HCl ® FeCl2 + H2
Fe + H2SO4(разб.) ® FeSO4 + H2
В концентрированных кислотах–окислителях железо растворяется только при нагревании
2Fe + 6H2SO4(конц.) –t°® Fe2(SO4)3 + 3SO2 + 6H2O
Fe + 6HNO3(конц.) –t°® Fe(NO3)3 + 3NO2 + 3H2O
(на холоде концентрированные азотная и серная кислоты пассивируют железо).
5) Железо вытесняет металлы, стоящие правее его в ряду напряжений из растворов их солей.
Fe + CuSO4 ® FeSO4 + Cu¯
Соединения двухвалентного железа
Гидроксид железа (II)
Образуется при действии растворов щелочей на соли железа (II) без доступа воздуха:
FeCl + 2KOH ® 2KCl + Fе(OH)2¯
Fe(OH)2 - слабое основание, растворимо в сильных кислотах:
Fe(OH)2 + H2SO4 ® FeSO4 + 2H2O
Fe(OH)2 + 2H+ ® Fe2+ + 2H2O
При прокаливании Fe(OH)2 без доступа воздуха образуется оксид железа (II) FeO:
Fe(OH)2 –t°® FeO + H2O
В присутствии кислорода воздуха белый осадок Fe(OH)2, окисляясь, буреет – образуя гидроксид железа (III) Fe(OH)3:
4Fe(OH)2 + O2 + 2H2O ® 4Fe(OH)3
Соединения железа (II) обладают восстановительными свойствами, они легко превращаются в соединения железа (III) под действием окислителей:
10FeSO4 + 2KMnO4 + 8H2SO4 ® 5Fe2(SO4)3 + K2SO4 + 2MnSO4 + 8H2O
6FeSO4 + 2HNO3 + 3H2SO4 ® 3Fe2(SO4)3 + 2NO + 4H2O
Соединения железа склонны к комплексообразованию (координационное число=6):
FeCl2 + 6NH3 ® [Fe(NH3)6]Cl2
Fe(CN)2 + 4KCN ® K4[Fe(CN)6](жёлтая кровяная соль)
Качественная реакция на Fe2+
При действии гексацианоферрата (III) калия K3[Fe(CN)6] (красной кровяной соли) на растворы солей двухвалентного железа образуется синий осадок (турнбулева синь):
3FeSO4 + 2K3[Fe(CN)6] ® Fe3[Fe(CN)6]2¯ + 3K2SO4
3Fe2+ + 3SO42- +6K+ + 2[Fe(CN)6]3- ® Fe3[Fe(CN)6]2¯ + 6K+ + 3SO42-
3Fe2+ + 2[Fe(CN)6]3- ® Fe3[Fe(CN)6]2¯
Соединения трёхвалентного железа
Оксид железа (III)
Образуется при сжигании сульфидов железа, например, при обжиге пирита:
4FeS2 + 11O2 ® 2Fe2O3 + 8SO2
или при прокаливании солей железа:
2FeSO4 –t°® Fe2O3 + SO2 + SO3
Fe2O3 - основной оксид, в незначительной степени проявляющий амфотерные свойства
Fe2O3 + 6HCl –t°® 2FeCl3 + 3H2O
Fe2O3 + 6H+ –t°® 2Fe3+ + 3H2O
Fe2O3 + 2NaOH + 3H2O –t°® 2Na[Fe(OH)4]
Fe2O3 + 2OH- + 3H2O ® 2[Fe(OH)4]-
Гидроксид железа (III)
Образуется при действии растворов щелочей на соли трёхвалентного железа: выпадает в виде красно–бурого осадка
Fe(NO3)3 + 3KOH ® Fe(OH)3¯ + 3KNO3
Fe3+ + 3OH- ® Fe(OH)3¯
Fe(OH)3 – более слабое основание, чем гидроксид железа (II).
Это объясняется тем, что у Fe2+ меньше заряд иона и больше его радиус, чем у Fe3+, а поэтому, Fe2+ слабее удерживает гидроксид-ионы, т.е. Fe(OH)2 более легко диссоциирует.
В связи с этим соли железа (II) гидролизуются незначительно, а соли железа (III) - очень сильно. Для лучшего усвоения материалов этого раздела рекомендуется просмотреть видеофрагмент (доступен только на CDROM). Гидролизом объясняется и цвет растворов солей Fe(III): несмотря на то, что ион Fe3+ почти бесцветен, содержащие его растворы окрашены в жёлто-бурый цвет, что объясняется присутствием гидроксоионов железа или молекул Fe(OH)3, которые образуются благодаря гидролизу:
Fe3+ + H2O « [Fe(OH)]2+ + H+
[Fe(OH)]2+ + H2O « [Fe(OH)2]+ + H+
[Fe(OH)2]+ + H2O « Fe(OH)3 + H+
При нагревании окраска темнеет, а при прибавлении кислот становится более светлой вследствие подавления гидролиза. Fe(OH)3 обладает слабо выраженной амфотерностью: он растворяется в разбавленных кислотах и в концентрированных растворах щелочей:
Fe(OH)3 + 3HCl ® FeCl3 + 3H2O
Fe(OH)3 + 3H+ ® Fe3+ + 3H2O
Fe(OH)3 + NaOH ® Na[Fe(OH)4]
Fe(OH)3 + OH- ® [Fe(OH)4]-
Соединения железа (III) - слабые окислители, реагируют с сильными восстановителями:
2Fe+3Cl3 + H2S-2 ® S0 + 2Fe+2Cl2 + 2HCl
Качественные реакции на Fe3+
1) При действии гексацианоферрата (II) калия K4[Fe(CN)6] (жёлтой кровяной соли) на растворы солей трёхвалентного железа образуется синий осадок (берлинская лазурь):
4FeCl3 +3K4[Fe(CN)6] ® Fe4[Fe(CN)6]3¯ + 12KCl
4Fe3+ + 12Cl- + 12K+ + 3[Fe(CN)6]4- ® Fe4[Fe(CN)6]3¯ + 12K+ + 12Cl-
4Fe3+ + 3 [Fe(CN)6]4- ® Fe4[Fe(CN)6]3¯
2) При добавлении к раствору, содержащему ионы Fe3+ роданистого калия или аммония появляется интенсивная кроваво-красная окраска роданида железа(III):
FeCl3 + 3NH4CNS « 3NH4Cl + Fe(CNS)3
(при взаимодействии же с роданидами ионов Fe2+ раствор остаётся практически бесцветным).
Кобальт и его соединения
По химической активности кобальт уступает железу. Он легко растворяется в кислотах - окислителях и медленно в обычных кислотах:
Co + 2HCl ® CoCl2 + H2
В простых соединениях у кобальта наиболее устойчива степень окисления +2, в комплесных – +3. Водные растворы солей кобальта (II) обычно окрашены в розовый цвет.
Гидроксид кобальта (II)
Образуется при действии щелочей на соли кобальта (II):
CoSO4 + 2KOH ® K2SO4 + Co(OH)2¯
На воздухе розовый осадок Co(OH)2 постепенно буреет, превращаясь в гидроксид кобальта (III):
4Co(OH)2 + O2 + 2H2O ® 4Co(OH)3
Сo(OH)2 - слабое основание, растворимое в сильных кислотах:
Co(OH)2 + 2HCl ® CoCl2 + 2H2O
При прокаливании Co(OH)2 образует оксид кобальта (II) CoO:
Co(OH)2 –t°® CoO + H2O
Cоединения кобальта склонны к комплексообразованию (координационное число=6):
Co(OH)2 + 6NH3 ® [Co(NH3)](OH)2
Никель и его соединения
Никель легко растворяется в разбавленной азотной кислоте и медленно в соляной и серной кислотах
Ni + 2HCl ® NiCl2 + H2
Ион Ni2+ в водных растворах имеет зелёную окраску. Для никеля наиболее характерна степень окисления +2. Оксид и гидроксид никеля проявляют основной характер.
NiO + H2SO4 –t°® NiSO4 + H2O
NiCl2 + 2NaOH –t°® Ni(OH)2¯(зелёный) + 2NaCl
Ni(OH)2 + H2SO4 ® NiSO4 + 2H2O
Соединения двухвалентного никеля могут давать комплексы с аммиаком:
Ni(OH)2 + 6NH2 ® [Ni(NH3)6](OH)2
ПОДГРУППА МЕДИ
Подгруппа меди – побочная подгруппа I группы
Свойства элементов подгруппы меди
Атомный номер | Название | Электронная конфигурация | r г/см3 | t°пл. °C | t°кип. °C | ЭО | Атомный радиус, нм | Удельная злектро- проводность м,мм-2,ом-1 | Степень окисления |
Медь Cu | [Ar] 3d104s1 | 8,96 | 1,9 | 0,127 | 58,1 | +1,+2 | |||
Серебро Ag | [Kr] 4d105s1 | 10,5 | 1,9 | 0,144 | 61,0 | +1 | |||
Золото Au | [Xe]4f145d106s1 | 19,3 | 2,4 | 0,144 | 41,3 | +1,+3 |
Физические свойства
1. Высокие значения плотности, температур плавления и кипения.
2. Высокая тепло- и электропроводность.
Химические свойства
Химическая активность небольшая, убывает с увеличением атомного номера.
Медь и её соединения
Получение
1. Пирометаллургия
CuO + C ® Cu + CO
CuO + CO ® Cu + CO2
2. Гидрометаллургия
CuO + H2SO4 ® CuSO4 + H2O
CuSO4 + Fe ® FeSO4 + Cu
электролиз:
2CuSO4 + 2H2O ® 2Cu + O2 + 2H2SO4
(на катоде) (на аноде)
Химические свойства
Взаимодействует с неметаллами при высоких температурах:
2Cu + O2 –t°® 2CuO
Cu + Ci2 –t°® CuCl2
Медь стоит в ряду напряжений правее водорода, поэтому не реагирует с разбавленными соляной и серной кислотами, но растворяется в кислотах – окислителях:
3Cu + 8HNO3(разб.) ® 3Cu(NO3)2 + 2NO + 2H2O
Cu + 4HNO3(конц.) ® Cu(NO3)2 + 2NO2 + 2H2O
Cu + 2H2SO4(конц.) ® CuSO4 + SO2 +2H2O
Сплавы меди с оловом - бронзы, с цинком - латуни.
Соединения одновалентной меди
Встречаются либо в нерастворимых соединениях (Cu2O, Cu2S, CuCl), либо в виде растворимых комплексов (координационное число меди – 2):
CuCl + 2NH3 ® [Cu(NH3)2]Cl
Оксид меди (I) - красного цвета, получают восстановлением соединений меди (II), например, глюкозой в щелочной среде:
2CuSO4 + C6H12O6 + 5NaOH ® Cu2O¯ + 2Na2SO4 + C6H11O7Na + 3H2O
Соединения двухвалентной меди
Оксид меди (II) - чёрного цвета. Восстанавливается под действием сильных восстановителей (например, CO) до меди. Обладает основным характером, при нагревании растворяется в кислотах:
CuO + H2SO4 –t°® CuSO4 + H2O
CuO + 2HNO3 –t°® Cu(NO3)2 + H2O
Гидроксид меди (II) Cu(OH)2 - нерастворимое в воде вещество светло-голубого цвета. Образуется при действии щелочей на соли меди (II):
CuSO4 + 2NaOH ® Cu(OH)2¯ + Na2SO4
При нагревании чернеет, разлагаясь до оксида:
Cu(OH)2 –t°® CuO + H2O
Типичное основание. Растворяется в кислотах.
Cu(OH)2 + 2HCl ® CuCl2 + 2H2O
Cu(OH)2 + 2H+ ® Cu2+ + 2H2O
Растворяется в растворе аммиака с образованием комплексного соединения (координационное число меди – 4) василькового цвета (реактив Швейцера, растворяет целлюлозу):
Cu(OH)2 + 4NH3 ® [Cu(HN3)4](OH)2
Малахит Cu2(OH)2CO3. Искусственно можно получить по реакции:
2CuSO4 + 2Na2CO3 + H2O ® Cu2(OH)2CO3¯ + 2Na2SO4 + CO2
Разложение малахита:
Cu2(OH)2CO3 –t°® 2CuO + CO2 + H2O
Серебро и его соединения
Благородный металл, устойчивый на воздухе. При потускнении серебра происходит реакция Гепара:
4Ag + 2H2S + O2 ® 2Ag2S + 2H2O
В ряду напряжений находится правее водорода, поэтому растворяется только в кислотах - окислителях:
3Ag + 4HNO3(разб.) ® 3AgNO3 + NO + 2H2O
Ag + 2HNO3(конц.) ® AgNO3 + NO2+ H2O
2Ag + 2H2SO4(конц.) ® Ag2SO4 + SO2 + 2H2O
В соединениях серебро обычно проявляет степень окисления +1.
Растворимый нитрат серебра AgNO3 используется как реактив для качественного определения Cl-, Br-, I-:
Ag+ + Cl- ® AgCl¯ белый
Ag+ + Br- ® AgBr¯ светло-жёлтый
Ag+ + I- ® AgI¯ тёмно-жёлтый
(Способность этих осадков образовывать растворимые комплексные соединения уменьшаются в ряду AgCl – AgBr – AgI). На свету галогениды серебра постепенно разлагаются с выделением серебра.
При добавлении растворов щелочей к раствору AgNO3 образуется тёмно-коричневый осадок оксида серебра Ag2O:
2AgNO3 + 2NaOH ® Ag2O + 2NaNO3 + H2O
Осадки AgCl и Ag2O растворяются в растворах аммиака с образованием комплексных соединений (координационное число серебра – 2):
AgCl + 2NH3 ® [Ag(NH3)2]Cl
Ag2O + 4NH3 + H2O ® 2[Ag(NH3)2]OH
Аммиачные комплексы серебра взаимодействуют с альдегидами (реакция серебряного зеркала):
O II | O II | |||
R – | C | + [Ag(NH3)2]OH ® R– | C | + Ag¯ + NH3 |
I H | I O | NH4 |
Золото и его соединения
Золото - мягче Cu и Ag, ковкий металл; легко образует тончайшую фольгу; благородный металл, устойчив как в сухом, так и во влажном воздухе. Растворим только в смеси концентрированных соляной и азотной кислот ("царской водке"):
Au + HNO3 + 4HCl ® H[AuCl4] + NO + 2H2O
Реагирует с галогенами при нагревании:
2Au + 3Cl2 ® 2AuCl3
Соединения термически не очень устойчивы и разлагаются при нагревании с выделением металла. Комплексообразователь (комплексы золота (III) обладают координационными числами 4, 5 и 6).
ПОДГРУППА МАРГАНЦА
Подгруппа марганца