Major Russian Gas Pipelines to Europe in 2009
This new US supplied natural gas displaces the natural gas formerly shipped to Ontario from western Canada in Alberta and Manitoba, thus dropping the government regulated pipeline shipping charges because of the significantly shorter distance from gas source to consumer. Compared to shipping by railroad, pipelines have lower cost per unit and higher capacity. Pipelines are preferable to transportation by truck for a number of reasons. Employment on completed pipelines represents only "1% of that of the trucking industry."
To avoid delays and US government regulation, many small, medium and large oil producers in North Dakota have decided to run an oil pipeline north to Canada to meet up with a Canadian oil pipeline shipping oil from west to east. This allows the Bakken Basin and Three Forks oil producers to get higher negotiated prices for their oil because they will not be restricted to just one wholesale market in the US. The distance from the biggest oil patch in North Dakota, is Williston, North Dakota, only about 85 miles or 137 kilometers to the Canadian border and Manitoba. Mutual funds and joint ventures are big investors in new oil and gas pipelines. In the fall of 2012, the US began exporting propane to Europe, known as LPG, as wholesale prices there are much higher than in North America.
As more North American pipelines are built, even more exports of LNG, propane, butane, and other natural gas products will occur on all three US coasts. To give insight, North Dakota's oil production has grown to 5 times in late 2012 compared to what it was just 6 years ago creating thousands of good paying long term jobs. North Dakota oil companies are shipping huge amounts of oil by tanker rail car as they can direct the oil to the market that gives the best price but pipelines are cheaper. Rail cars can be used to avoid a congested oil pipeline to get the oil to a different pipeline and get the oil to market faster and different less busy oil refineries.
Enbridge in Canada applying to reverse an oil pipeline going from east-to-west and expanding it and using it to ship western Canadian bitumen oil eastward. From a presently rated 250,000 barrels equivalent per day pipeline, it will be expanded to between one million to 1.3 million barrels per day. It will bring western oil to refineries in Ontario, Michigan, Ohio, PA, Quebec and New York by early 2014. New Brunswick will also refine some of this western Canadian crude and export some crude and refined oil to Europe from its deep-water oil ULCC loading port.
Although pipelines can be built under the sea, that process is economically and technically demanding, so the majority of oil at sea is transported by tanker ships.
Oil pipelines are made from steel or plastic tubes with inner diameter typically from 4 to 48 inches (100 to 1,220 mm). Most pipelines are typically buried at a depth of about 3 to 6 feet (0,91 to 1,83 m). To protect pipes from impact, abrasion, and corrosion, a variety of methods are used. These can include wood lagging (wood slats), concrete coating, rock shield, high-density polyethylene, imported sand padding, and padding machines.
The oil is kept in motion by pump stations along the pipeline, and usually flows at speed of about 1 to 6 meters per second (3,3 to 19,7 ft./s). Multi-product pipelines are used to transport two or more different products in sequence in the same pipeline. Usually in multi-product pipelines there is no physical separation between the different products. Some mixing of adjacent products occurs, producing interface, also known in the industry as "transmix". At the receiving facilities this interface is usually absorbed in one of the products based on pre-calculated absorption rates. Alternately, transmix may be diverted and shipped to facilities for separation of the commingled products.
Crude oil contains varying amounts of paraffin wax and in colder climates wax buildup may occur within a pipeline. Often these pipelines are inspected and cleaned using pigging, the practice of using devices known as "pigs" to perform various maintenance operations on a pipeline. The devices are also known as "scrapers" or "go-devils". "Smart pigs" (also known as "intelligent" or "intelligence" pigs) are used to detect anomalies in the pipe such as dents, metal loss caused by corrosion, cracking or other mechanical damage. These devices are launched from pig-launcher stations and travel through the pipeline to be received at any other station down-stream, either cleaning wax deposits and material that may have accumulated inside the line or inspecting and recording the condition of the line.
For natural gas, pipelines are constructed of carbon steel and vary in size from 2 to 60 inches (51 to 1,524 mm) in diameter, depending on the type of pipeline. The gas is pressurized by compressor stations and is odorless unless mixed with a mercaptan odorant where required by a regulating authority.