Методы анализа гидродинамического сдвига
Белки относятся к высокомолекулярным соединениям, в состав которых входят сотни и даже тысячи аминокислотных остатков, объединенных в макромолекулярную структуру. Молекулярная массабелков колеблется от 6000 (нижний предел) до 1000000 и выше в зависимости от количества отдельных полипептидных цепей в составе единой молекулярной структуры белка. Такие полипептидные цепи получили название субъединиц. Их мол. масса варьирует в широких пределах – от 6000 до 100000 и более.
Аминокислотный состав и последовательность аминокислот выяснены для многих тысяч белков. В связи с этим стало возможным вычисление их молекулярной массы химическим путем с высокой точностью. Однако для огромного количества встречающихся в природе белков химическое строение не выяснено, поэтому основными методами определения молекулярной массы все еще остаются физико-химические методы (гравиметрические, осмометрические, вискозиметрические, электрофоретические, оптические и др.). На практике наиболее часто используются методы седиментационного анализа, гель-хроматография и гель-электрофорез. Определениемолекулярной массыбелковметодами седиментационного анализа проводят в ультрацентрифугах , в которых удается создать центробежные ускорения (g), превышающие в 200000 и более раз ускорение земного притяжения. Обычно вычисляют молекулярную массу по скорости седиментациимолекулбелка или седиментационному равновесию. По мере перемещения молекул от центра к периферии образуется резкая граница растворитель-белок (регистрируется автоматически). Оптические свойства растворителя ибелка используются при определении скорости седиментации; последнюю выражают через константуседиментации s, которая зависит как от массы, так и от формы белковой частицы:
где v – скорость перемещения границы растворитель-белок, см/с; ω – угловая скорость ротора, рад/с; r – расстояние от центра ротора до середины ячейки с растворомбелка, см. Константаседиментации имеет размерность времени (ее выражают в секундах). Величинаконстантыседиментации, равная 1•10–13 с, условно принята за единицу и названа сведбергом (S). Значения константседиментациибольшинства белков лежат в пределах 1–50 S, хотя в ряде случаев эти значения превышают 100 S.
Для вычисления молекулярной массы (М), помимо константыседиментации, необходимы дополнительные сведения о плотностирастворителя и белка и другие согласно уравнению Сведберга:
где R – газовая постоянная, эрг/(моль•град); Т – абсолютная температура (по шкале Кельвина); s – константаседиментации; ρ – плотность растворителя; v – парциальный удельный объем молекулыбелка; D - коэффициент диффузии.
Определение молекулярной массыбелков методом ультрацентрифугирования требует много времени и сложной и дорогостоящей аппаратуры. Поэтому в последние годы разработаны два более простых метода (гель-хроматография и электрофорез). При использовании гель-хроматографии в первую очередь требуется откалибровать колонку. Для этого через колонку с сефадексом пропускают несколько белков с известными молекулярными массами и строят график, откладывая значения логарифмов молекулярной массы против их элюционных объемов, которые находят, как показано на рис. 1.9.
Известно, что между логарифмом молекулярной массыбелка, имеющего сферическую форму, и элюционным объемом существует прямая зависимость. Поэтому легко определить молекулярную массу исследуемого белка, зная его объем элюции. Второй разновидностью этого метода является тонкослойная гель-хроматография. Длина пробега белка (в миллиметрах) через тонкий слой сефадекса находится в логарифмической зависимости от молекулярной массыбелка (рис. 1.10).
Рис. 1.9. Измерение объема элюции (VЭ).
Рис. 1.10. Зависимость между длиной пробега белковых частиц при гель-хроматографии в тонком слое сефадекса Г-150 (сверхтонкого) и их молекулярными массами (в полулогарифмической системе координат).
1 - рибонуклеаза; 2 - химотрипсиноген; 3 -яичный альбумин; 4 - сывороточный альбумин; 5 - γ-глобулин; Х - белок с неизвестноймолекулярной массой.
Гель-хроматография, кроме простоты и быстроты, имеет дополнительное преимущество: не требуется выделять белок в чистом виде, так как примеси других белков не мешают определению, поскольку каждый из них проходит через колонку со свойственной ему скоростью, определяемой молекулярной массой. Это обстоятельство широко используется в энзимологии, когда оказывается возможным определение молекулярной массы даже очень небольшого количества фермента в присутствии других белков, не обладающих аналогичной каталитической активностью.
При использовании диск-электрофореза в полиакриламидном геле для определения молекулярной массыбелков также строят график зависимости между логарифмом молекулярной массы калибровочных белков и подвижностью белковых частиц в полиакриламидномгеле, а затем, определив подвижность исследуемого белка, по графику находят его массу (рис. 1.11). Электрофорез проводят в присутствии детергентадодецилсульфата натрия, так как только в этом случае наблюдается прямая пропорциональная зависимость между молекулярной массой и подвижностью белков. Белки с четвертичной структурой при этих условиях распадаются на субъединицы, поэтому метод находит широкое применение для определения молекулярной массы субъединиц белка.
Рис. 1.11. Зависимость между молекулярной массой и относительной подвижностью белка при диск-электрофорезе в полиакриламидном геле в присутствии додецилсульфата натрия (в полулогарифмической системе координат).
1 - сывороточный альбумин; 2 - яичный альбумин; 3 - пепсин; 4 - химотрипсиноген; 5 - мио-глобин; 6 - цитохром с; Х - белок с неизвестной молекулярной массой.
Недавно предложен новый масс-спектрометрический метод (так называемый лазерный десорбционно-ионизационный метод), позволяющий определять молекулярную массу небольших пептидов (вазопрессин, инсулин) и крупных биополимерных молекул и, кроме того, структуру биомолекул.
37. Молекулярно-акустические методы.
МОЛЕКУЛЯРНАЯ АКУСТИКА - раздел физ. акустики, в к-ром структура и свойства вещества и кинетика молекулярных процессов исследуются акустич. методами. Осн. методы M. а.- измерения скорости звука и коэф. поглощения звука в зависимости от разл. физ. параметров: частоты звуковой волны, темп-ры, давления, магн. поля и др. величин. Исследования, проводимые такими методами, иногда объединяют в особый раздел эксперим. акустики - ультразвуковую или акустическую спектроскопию. Методами M. а. можно исследовать газы, жидкости, полимеры, твёрдые тела, плазму. На ранней стадии развития этой области и в нек-рых случаях до сих пор термин "М. а." применяют лишь к исследованиям молекулярной структуры газов и жидкостей.
M. а. как самостоят. раздел акустики возникла в 30-х гг. 20 в., когда было выяснено, что процессы коле-бат. релаксации (см. Релаксация акустическая)в газах вносят существенный вклад в поглощение звука и приводят к появлению дисперсии звука. В дальнейшем было выяснено, что эти процессы играют важную роль при распространении звука не только в газах, но и в жидкостях и в др. веществах. Изучение релаксац. процессов в звуковой волне позволило связать нек-рые свойства вещества на молекулярном уровне, а также кинетич. характеристики молекулярных процессов с такими макроскопич. величинами, как скорость и коэф. поглощения звука.
Скорость звука с определяется структурой среды и взаимодействием между молекулами, поэтому измерения её величины дают сведения о равновесной структуре жидкостей и газов. По скорости звука можно определить адиабатич. сжимаемость вещества, отношение темплоёмкостей, модули упругости твёрдого тела и др. Данные измерения скорости звука позволяют судить о составе газовых и жидких смесей, в т. ч. и растворов. Данные по поглощению звука позволяют определять коэф. сдвиговой и объёмной вязкости, времена релаксации и др. параметры.
В газах по зависимости скорости звука от темп-ры определяют параметры, характеризующие взаимодействие молекул при столкновениях. В жидкостях, вычисляя скорость звука на основании той или иной модели жидкости и сравнивая результаты расчёта с экспериментом, в ряде случаев можно оценить правдоподобность используемой модели и определить энергию взаимодействия между молекулами.
При наличии релаксац. процессов энергия поступат. движения молекул в звуковой волне перераспределяется на внутр. степени свободы, при этом появляется дисперсия скорости звука, а зависимость коэф. поглощения от частоты отклоняется от классич. квадратичного закона: коэф. поглощения звука на длину волны имеет максимум на нек-рой частоте wp = 1/т, наз.
частотой релаксации. Величина дисперсии скорости звука и значение коэф. поглощения на частоте wp зависят от того, какие именно степени свободы возбуждаются под действием звука, а время релаксации т связано со скоростью обмена энергией между разл. степенями свободы. Измеряя скорость и поглощение звука в зависимости от частоты, можно судить о характере молекулярных процессов и о том, какой из этих процессов вносит осн. вклад в релаксацию. Методы M. а. позволяют исследовать возбуждение колебат. и вращат. степеней свободы в газах и жидкостях, характер столкновений молекул в смесях разл. газов, процесс установления равновесия при хим. реакциях, структурную релаксацию в жидкостях, процессы сдвиговой релаксации в очень вязких жидкостях и полимерах, разл. процессы взаимодействия звука с электронами проводимости, магнонами, фононами и др. элементарными возбуждениями в твёрдых телах (см. Спин-фононное взаимодействие, Акустоэлектронное взаимодействие). Методы M. а. могут использоваться также для исследования кинетики молекулярных процессов в растворах и смесях, в критич. области при фазовых переходах, в расслаивающихся полимерных системах. Эти методы позволяют исследовать свойства стёкол в твёрдом и жидком состоянии, включая область стеклования. В жидкости с пузырьками газа по характеру зависимостей скорости и поглощения от частоты можно определить размеры пузырьков и концентрацию газовой фазы, в биополимерах - характер межмолекулярных взаимодействий и перестройку молекул биополимеров в растворе.
Область релаксации для жидкостей лежит, как правило, в диапазоне более высоких частот, чем для газов. В очень вязких жидкостях, полимерах и нек-рых др. веществах в поглощение и дисперсию может давать вклад целый набор релаксац. процессов с широким спектром времён релаксации. Изучение влияния темп-ры и давления на частотные зависимости скорости и поглощения звука позволяет разделить вклад разл. релаксац. процессов.
В M. а. для исследований обычно применяется УЗ- и гиперзвуковые волны: в газах - в диапазоне частот 104-105 Гц, а в жидкостях и твёрдых телах - в диапазоне 105 -1010 Гц. Использование оптич. методов, а именно: измерение смещения и ширины компонент Мандельштама - Бриллюэна рассеяния и определение по ним скорости и коэф. поглощения звука, позволило расширить диапазон применяемых частот вплоть до десятков ГГц.
Методы M. а. могут использоваться также для исследования веществ, в к-рых взаимодействие звука с элементарными возбуждениями не ограничивается простейшими релаксац. процессами. Напр., исследование поглощения звука в металлах и полупроводниках при разл. темп-pax, магн. полях и др. воздействующих факторах позволяет получить информацию о поведении электронов, о структуре ферма-поверхностей и об особенностях электрон-фононного взаимодействия. Измерение затухания звука в диэлектриках, напр. в кварце, в зависимости от темп-ры и при разных условиях предварит. обработки позволяет судить о наличии тех или иных примесей или дефектов.
Значение изучения межмолекулярных взаимодействий; специфика предмета
Знание потенциалов межмолекуляриого взаимодействия *) требуется в широком круге задач физики, химии и биологии. Само наличие в природе жидкостей и твердых тел обязано существованию межмо л окулярных взаимодействий. Термодинамические свойства газов и жидкостей, их кинетические характеристики (коэффициенты теплопроводности, диффузии и т. д.) определяются характером межмолекуляриых взаимодействий. Межмолекуляриые | силы определяют и ббльшую часть свойств кристаллов, таких, как равновесная геометрия, энергия сцепления, фоиошше спектры ) и т. д.
Межмолекуляриые взаимодействия обусловливают образование сложных химических комплексов типа комплексов с переносом заряда, комплексов слодородной связью. Исследование механизма элементарных химических актов невозможно без знания процессов обмена поступательной и электронна-колебательной энергий, зависящих от взаимодействия частиц при столкновениях. Для расчета скоростей химических реакций требуется знание потенциальной поверхности, характеризующей взаимные траектории реагентов.
Велико значение межмолекулярных взаимодействий и в биологии. Достаточно сказать, что межмолекуляриые силы обеспечивают стабильность таких важных для жизни соединений, как ДНК и РНК; играют существенную роль в механизме мышечных сокращений. На балансе электростатических сил отталкивания и дисперсионных сил притяжения построена теория коагуляции коллоидных растворов.
38. Электрофизические методы анализа
Эффе́кт Хо́лла — явление возникновения поперечной разности потенциалов (называемой также холловским напряжением) при помещении проводника с постоянным током в магнитное поле. Открыт Эдвином Холлом в 1879 году в тонких пластинкахзолота.