История развития органической химии
Органическая химия, наука, изучающая соединения углерода с другими элементами (органические соединения), а также законы их превращений. Название "органическая химия" возникло на ранней стадии развития науки, когда предмет изучения ограничивался соединениями углерода растительного и животного происхождения. Не все соединения углерода классифицируются как органические. Например, СО2, HCN, CS2 традиционно относят к неорганическим. Условно можно считать, что прототипом орг. соединений является метан СН4. К настоящему времени число известных орг. соединений превышает 10 млн. и увеличивается каждый год на 250-300 тыс. Многообразие орг. соединений определяется уникальной способностью атомов углерода соединяться друг с другом простыми и кратными связями, образовывать соединения с практически неограниченным числом атомов, связанных в цепи, циклы, бициклы, трициклы, полициклы, каркасы и др., образовывать прочные связи почти со всеми элементами периодичной системы, а также явлением изомерии – существованием разных по свойствам веществ, обладающих одним и тем же составом и молярной массой.
Многообразие и громадное число орг. соединений определяет значение орг. химии как крупнейшего раздела современной химии. Окружающий нас мир построен главным образом из орг. соединений; пища, топливо, одежда, лекарства, краски, моющие средства, материалы, без которых невозможно создание транспорта, книгопечатания, проникновение в космос и прочее, – все это состоит из орг. соединений. Важнейшую роль орг. соединения играют в процессах жизнедеятельности. Отдельный раздел орг. химии составляет химия высокомолярных соединений: по величине молекул орг. вещества делятся на низкомолекулярные (с молярной массой от нескольких десятков до нескольких сотен, редко до тысячи) и высокомолекулярные (макромолекулярные; с молярной массой порядка 104-106 и более). Орг. химия изучает не только соединения, получаемые из растительных и животных организмов, но в основном соединения, созданные искусственно с помощью лаборатории или промышленного органического синтеза. Более того, объектами изучения компьютерной орг. химии являются соединения, не только не существующие в живых организмах, но которые, по-видимому, нельзя получить искусственно (напр., гипотетический аналог метана, имеющий не природное тетраэдрич. строение, а форму плоского квадрата, в центре которого лежит атом С, а в вершинах – атомы Н).
Классификация органических соединений. Основу органических соединений составляет незамкнутая (открытая) или замкнутая цепь углеродных атомов; одно или несколько звеньев цепи может быть заменено на атомы, отличные от углерода, – гетероатомы, чаще всего О, N, S. По структуре органические соединения подразделяют на алифатические соединения – углеводороды и их производные, имеющие открытую углеродную цепь; карбоциклические соединения с замкнутой углеродной цепью; гетероциклические соединения. Углеводороды и их производные, не содержащие кратных связей, относятся к насыщенным соединениям, с кратными связями - к ненасыщенным.
Историческая справка. Истоки органической химии восходят к глубокой древности (уже тогда знали о спиртовом и уксуснокислом брожении, крашении индиго и ализарином). Однако в средние века (период алхимии) были известны лишь немногие индивидуальные орг. вещества. Все исследования этого периода сводились главным образом к операциям, при помощи которых, как тогда думали, одни простые вещества можно превратить в другие. Начиная с ХVI в. (период ятрохимии) исследования были направлены в основном на выделение и использование различных лекарственных веществ: был выделен из растений ряд эфирных масел, приготовлен диэтиловый эфир, сухой перегонкой древесины получены древесный (метиловый) спирт и уксусная кислота, из винного камня – винная кислота, перегонкой свинцового сахара – уксусная кислота, перегонкой янтаря – янтарная.
Слияние химических соединений растительного и животного происхождения в единую хим. науку орг. химии осуществил Й. Берцелиус, который ввел сам термин и понятие орг. вещества, образование последнего, по Берцелиусу, возможно только в живом организме при наличии "жизненной силы".
Это заблуждение опровергли Ф. Вёлер (1828), который получил мочевину (орг. вещество) из цианата аммония (неорганическое вещество), А. Кольбе, синтезировавший уксусную кислоту, М. Бертло, получивший метан из H2S и CS2, A. M. Бутлеров, синтезировавший сахаристые вещества из формалина. В первой пол. XIX в. был накоплен обширный опытный материал и сделаны первые обобщения, определившие бурное развитие орг. химии: развиты методы анализа орг. соединения (Берцелиус, Ю. Либих, Ж. Дюма, М. Шеврёль), создана теория радикалов (Вёлер, Ж. Гей-Люссак, Либих, Дюма) как групп атомов, переходящих неизменными из исходной молекулы в конечную в процессе реакции; теория типов (Ш. Жерар, 1853), в которой орг. соединения конструировались из неорганических веществ – «типов» замещением в них атомов на орг. фрагменты; введено понятие изомерии (Берцелиус). Одновременно продолжается интенсивное развитие синтеза. Создаются первые промышленные производства органические соединения (А. Гофман, У. Перкин-старший – синтетические красители: мовеин, фуксин, цианиновые и азокрасители). Усовершенствование открытого Н. Н. Зининым (1842) способа синтеза анилина послужило основой создания анилинокрасочной промышленности. Идея неразрывной связи хим. и физ. свойств молекулы с ее строением, идея единственности этого строения впервые была высказана Бутлеровым (1861), который создал классическую теорию хим. строения (атомы в молекулах соединяются согласно их валентностям, хим. и физ. свойства соединения определяются природой и числом входящих в их состав атомов, а также типом связей и взаимным влиянием непосредственно несвязанных атомов). Теория хим. строения определила дальнейшее бурное развитие органической химии: в 1865 Кекуле предложил формулу бензола, позднее высказал идею об осцилляции связей; В.В. Марковников и А.М. Зайцев сформулировали ряд правил, впервые связавших направление хим. реакции с хим. строением вступающего в реакцию вещества.
Работами Байера, К. Лаара, Л. Клайзена, Л. Кнорра развиты представления о таутомерии –подвижной изомерии. Все эти теоретические представления способствовали мощному развитию синтетической химии. К кон. XIX в. были получены все важнейшие представители углеводородов, спиртов, альдегидов и кетонов, карбоновых кислот, галогено- и нитропроизводных, азот- и серосодержащих структур, гетероциклов ароматической природы. Разработаны методы получения диенов, ацетиленов и алленов (А.Е. Фаворский). Открыты многочисленные реакции конденсации (Ш. Вюрц, А. П. Бородин, У. Перкин, Клайзен, А. Михаэль, Ш. Фридель, Дж. Крафтс, Э. Кнёвенагель и др.). Исключительные успехи были достигнуты Э. Г. Фишером в изучении углеводов, белков и пуринов, в использовании ферментов в орг. синтезе (1894), им же был осуществлен синтез полипептидов. Основой промышленности душистых веществ становятся работы О. Валлаха по химии терпенов. Выдающимися даже для нашего времени являются пионерские работы Р. Вильштеттера. Фундаментальный вклад в развитие орг. синтеза был внесен В. Гриньяром (1900-20) и Н.Д. Зелинским (1910) – создание исключительно плодотворного метода синтеза магнийорганических соединений и открытие каталитических превращений углеводородов; последнее сыграло выдающуюся роль в развитии химии нефти. Химия свободных радикалов началась с работ М. Гомберга (1900), открывшим трифенилметильный радикал, и была продолжена работами А. Е. Чичибабина, Г. Виланда и Ш. Гольдшмидта.
Строение органических соединений. Для органических соединений характерны неполярные ковалентные связи С—С и полярные ковалентные связи С—О, С—N, С—Hal, С—металл и т.д. Образование ковалентных связей было объяснено на основании развитых Г. Льюисом и В. Косселем (1916) предположений о важной роли электронных образований – октетов и дублетов. Молекула устойчива, если валентная оболочка таких элементов, как С, N, О, Hal, содержит 8 электронов (правило октета), а валентная оболочка водорода – 2 электрона. Хим. связь образуется обобществленной парой электронов различных атомов (простая связь). Двойные и тройные связи образуются соответсвующимися двумя и тремя такими парами. Электроотрицательные атомы (F, О, N) используют для связи с углеродом не все свои валентные электроны; "неиспользованные" электроны образуют неподеленные (свободные) электронные пары. Полярность и поляризуемость ковалентных связей в орг. соединениях в электронной теории Льюиса – Косселя объясняется смещением электронных пар от менее электроотрицательного к более электроотрицательному атому, что находит выражение в индуктивном эффекте и мезомерном эффекте.
Классическая теория хим. строения и первоначально электронные представления оказались не в состоянии удовлетворительно описать на языке структурных формул строение многих соединений, например, ароматических. Современная теория связи в орг. соединениях основана главным образом на понятии орбиталей и использует методы молекулярных орбиталей. Интенсивно развиваются квантовохимические методы, объективность которых определяется тем, что в их основе лежит аппарат квантовой механики, единственно пригодный для изучения явлений микромира.
Общая характеристика реакций органических соединений
Реакции органических соединений имеют некоторые специфические особенности. В реакциях неорганических соединений обычно участвуют ионы; эти реакции протекают очень быстро, иногда мгновенно при нормальной температуре. В реакциях орг. соединений обычно участвуют молекулы; при этом одни ковалентные связи разрываются, а другие образуются. Такие реакции протекают медленнее ионных, и для их ускорения часто требуется повысить температуру или добавить катализатор. Наиболее часто используют в качестве катализаторов и основания. Обычно протекает не одна, а несколько реакций, так что выход нужного продукта очень часто составляет менее 50%.
Возникновение органических соединений
Большинство орг. соединений в природе образуется в процессе фотосинтеза из диоксида углерода и воды под действием солнечного излучения, поглощаемого хлорофиллом в зеленых растениях. Однако орг. соединений должны были существовать на земле и до возникновения жизни, которая не могла появиться без них. Первичная земная атмосфера около 2 млрд. лет назад имела восстановительные свойства, т. к. в ней не было кислорода, а содержались прежде всего водород и вода, а также СО, азот, аммиак и метан.
В условиях сильного радиоактивного излучения земных минералов и интенсивных атмосферных разрядов в атмосфере протекал абиотический синтез аминокислот по схеме:
CH4 + H2O + NH3 →Аминокислоты
Возможность такой реакции в настоящее время доказана лабораторными опытами.