Выделение медиаторов
Для того, чтобы молекулы медиатора попали в синаптическую щель, синаптический пузырёк должен сначала слиться с пресинаптической мембраной в её активной зоне. После этого в пресинаптической мембране образуется увеличивающееся примерно до 50 нм в диаметре отверстие, через которое всё содержимое пузырька опорожняется в щель (Рис. 6.2). Этот процесс называется экзоцитозом. Когда необходимости в выделении медиатора нет, большая часть синаптических пузырьков бывает прикреплена к цитоскелету специальным белком (он называется синапсин), который по своим свойствам напоминает сократительный мышечный белок актин.
Когда нейрон возбуждается и потенциал действия достигает пресинаптического окончания, в нём открываются потенциалзависимые каналы для ионов кальция. Их плотность особенно высока в области активных зон - около 1500/ мкм2. В большинстве нейронов ток ионов кальция в нервное окончание наблюдается и при мембранном потенциале покоя, что обусловлено электрохимическим градиентом. Но во время деполяризации мембраны ток кальция увеличивается, а на вершине пика потенциала действия он становится максимальным и приблизительно через 0,2 мс после этого происходит выделение медиатора.
Роль ионов кальция состоит в том, чтобы преобразовать вызванную возбуждением нейрона деполяризацию в неэлектрическую активность - выделение медиатора. Без входящего тока ионов кальция нейрон фактически лишается своей выходной активности. Кальций нужен для взаимодействия белков мембраны синаптических пузырьков - синаптотагмина и синаптобревина с белками плазматической мембраны аксона - синтаксином и неурексином. В результате взаимодействия этих белков синаптические пузырьки перемещаются к активным зонам и прикрепляются к плазматической мембране. Только после этого начинается экзоцитоз (Рис. 6.3).
Некоторые нейротоксины, например ботулинический, повреждают синаптобревин, что препятствует выделению медиатора - о тяжелых последствиях ботулизма уже говорилось в предыдущей главе. Ещё один нейротоксин - яд пауков рода Latrodectus связывает другой белок -неурексин, что приводит к быстрому опустошению пузырьков с медиатором. После укуса каракурта, одного из представителей этого рода пауков, у человека немеют ноги, его мучает удушье, мышцы живота становятся твёрдыми, как доска, возникает нестерпимая боль в животе и груди, наступает сильное психическое возбуждение, страх смерти, а иногда и сама смерть. Американский родственник каракурта - чёрная вдова (black widow) пользуется тем же ядом, что и каракурт, уступая, впрочем, каракурту в убойной силе.
Небольшое количество медиатора выделяется и без возбуждения нейрона, происходит это малыми порциями - квантами, что было впервые обнаружено в нервно-мышечном синапсе. В результате выделения одного кванта на мембране концевой пластинки возникает миниатюрный подпороговый потенциал величиной около 0,5 - 1 мВ. Выяснено, что для такой деполяризации концевой пластинки в ней надо открыть минимум 2000 каналов, а чтобы открыть столько каналов, необходимо приблизительно 5000 молекул ацетилхолина, следовательно квант представляет собой порцию медиатора, содержащуюся всего лишь в одном синаптическом пузырьке. Для возникновения нормального потенциала концевой пластинки требуется освободить около 150 квантов медиатора, но за очень короткое время - не более 2 мс.
В большинстве синапсов центральной нервной системы после вхождения ионов кальция в пресинаптическое окончание выделяется от 1 до 10 квантов медиатора, поэтому одиночные потенциалы действия практически всегда оказываются подпороговыми. Количество выделяемого медиатора увеличивается, когда к пресинаптическому окончанию поступает серия высокочастотных потенциалов действия. В этом случае растёт и амплитуда постсинаптического потенциала, т.е. происходит временная суммация.
После высокочастотной стимуляции пресинаптического окончания наблюдается повышение эффективности синаптической передачи в течение нескольких минут, а у отдельных нейронов ещё дольше - до часа, когда в ответ на одиночный потенциал действия медитора выделяется больше, чем обычно. Это явление получило название посттетанической потенциации. Объясняется оно тем, что при высокочастотной или тетанической стимуляции растёт концентрация свободного кальция в нервном окончании и им насыщаются буферные системы, прежде всего эндоплазматический ретикулум и митохондрии. В связи с этим активируется специализированный фермент: кальций-кальмодулин-зависимая протеинкиназа. Этот фермент вызывает повышенное отхождение синаптических пузырьков от цитоскелета. Освободившиеся синаптические пузырьки направляются к пресинаптической мембране и сливаются с ней, после этого происходит экзоцитоз.
Повышение эффективности синаптической передачи является одним из механизмов образования памяти, а накопление ионов кальция в пресинаптическом окончании можно рассматривать как один из способов хранения информации о предшествующей высокой активности нейрона.
6.4. Разные постсинаптические рецепторы: ионотропное и метаботропное управление
Представление о рецепторах сформулировал ещё в конце XIX века знаменитый германский учёный Пауль Эрлих (Erlich P.): " Химические субстанции влияют только на те элементы ткани, с которыми они могут связаться. Эта связь должна быть специфичной, т.е. химические группы должны соответствовать друг другу, как ключ и замок". Постсинаптические рецепторы представляют собой трансмембранные белки, у которых наружная часть узнаёт и связывает молекулы медиатора. Вместе с тем, их можно рассматривать ещё и как эффекторы, управляющие открытием и закрытием хемозависимых ионных каналов. Есть два принципиально отличающихся способа управления каналами: ионотропный и метаботропный.
При ионотропном управлении рецептор и канал представляют собой единую макромолекулу. Если к рецептору присоединяется медиатор, то конформация всей молекулы изменяется так, что в центре канала образуется пора и через неё проходят ионы. При метаботропном управлении рецепторы не связаны с каналом напрямую и поэтому присоединение медиатора и открытие канала разделены несколькими промежуточными этапами, в которых участвуют вторичные посредники. Первичным посредником является сам медиатор, который при метаботропном управлении присоединяется к рецептору, действующему на несколько молекул G-белка, который представляет собой длинную извитую аминокислотную цепь, пронизывающие клеточную мембрану семью своими петлями. Известно около дюжины разновидностей G-белков, все они связаны с нуклеотидом гуанозинтрифосфатом (ГТФ). Присоединение нейротрансмиттера к рецептору вызывает сразу в нескольких связанных с ним молекулах G-белка, превращение бедного энергией предшественника - гуанозиндифосфата (ГДФ) в ГТФ.
Такого рода преобразования, обусловленные присоединением остатка фосфорной кислоты, называются фосфорилированием. Вновь образующаяся связь богата энергией, поэтому молекулы G-белка, в которых произошло превращение ГДФ в ГТФ, становятся активированными (Рис. 6.4). Активация белковых молекул может проявляться в изменении их конформации, а у ферментов она обнаруживается в повышении сродства к субстрату, на который действует фермент.
Приобретённая активность у G-белков направлена на стимуляцию или подавление активности (в зависимости от типа G-белка) некоторых ферментов (аденилатциклазы, гуанилатциклазы, фосфолипаз А 2 и С), которые в случае активации вызывают образование вторичных посредников. Конкретный ход дальнейших событий зависит от типа преобразующего сигнал белка. В случае прямого управления ионными каналами активированная молекула G-белка перемещается по внутренней поверхности мембраны к ближайшему ионному каналу и присоединяется к нему, что приводит к открытию этого канала. При непрямом управлении активированный G-белок использует одну из систем вторичных посредников, которые либо управляют ионными каналами, либо изменяют характер метаболизма - обменных процессов в клетке, либо вызывают экспрессию определённых генов, за которой следует синтез новых белков, что, в конечном счёте, тоже приводит к изменению характера обменных процессов. Из вторичных посредников лучше всего изучен циклический аденозинмонофосфат (цАМФ), образование которого осуществляется в несколько этапов (Рис. 6.5). Активированный G-белок действует на интегральный белок клеточной мембраны - аденилатциклазу, которая является ферментом. Активированная аденилатциклаза вызывает превращение молекул аденозинтрифосфата (АТФ) в циклический аденозинмонофосфат (цАМФ), причём одна молекула аденилатциклазы вызывает образование множества молекул цАМФ. Молекулы цАМФ могут свободно диффундировать в цитоплазме, становясь, таким образом, переносчиками полученного сигнала внутри клетки. Там они находят ферменты - цАМФ-зависимые протеинкиназы и активирует их. Протеинкиназы стимулируют определённые биохимические реакции - характер обменных процессов направленно изменяется.
Следует обратить внимание на усиление слабого синаптического сигнала при такой последовательности событий. Присоединение одной молекулы нейротрансмиттера к рецептору сопровождается активацией нескольких молекул G-белков. Каждая молекула G-белка может активировать несколько молекул аденилатциклазы. Каждая молекула аденилатциклазы вызывает образование множества молекул цАМФ. По такому же принципу, но с участием других типов G-белка активируются другие системы известных вторичных посредников (Рис. 6.6). Некоторые вторичные посредники могут диффундировать через мембрану клетки и оказывать действие на соседние нейроны, в том числе и на пресинаптический (Рис. 6.7).
Таким, образом, ионотропное управление является непосредственным: лишь только медиатор присоединится к рецептору - открывается ионный канал, причём всё происходит очень быстро, в течение тысячных долей секунды. При метаботропном управлении ответ на присоединение медиатора непрямой, он требует участия преобразующих белков и включает активацию вторичных посредников, а поэтому и появляется значительно позже, чем ионотропный: спустя секунды, а иногда и минуты. Зато при метаботропном управлении обусловленные действием медиатора изменения сохраняются дольше, чем при ионотропном управлении. Ионотропным управлением чаще пользуются низкомолекулярные медиаторы, а нейропептиды чаще активируют системы вторичных посредников, однако эти различия не абсолютны. К ионотропным рецепторам относятся Н-холинорецепторы, один тип рецепторов для ГАМК, два типа рецепторов для глутамата, рецепторы глицина и серотонина. К метаботропным принадлежат рецепторы нейропептидов, М-холинорецепторы, альфа- и бета-адренорецепторы, по одному типу рецепторов для ГАМК, глутамата и серотонина, а также обонятельные рецепторы.
Ещё один вид рецепторов находится не на постсинаптической, а на пресинаптической мембране - это ауторецепторы. Они связаны с G-белком пресинаптической мембраны, их функция состоит в регуляции количества молекул медиатора в синаптической щели. Одни ауторецепторы связываются с медиатором, если его концентрация становится чрезмерной, другие - если недостаточной. После этого меняется интенсивность выделения медиатора из пресинаптического окончания: уменьшается в первом случае и увеличивается - во втором. Ауторецепторы являются важным звеном обратной связи, с помощью которой регулируется стабильность синаптической передачи.