Химические факторы, влияющие на выбор реактора

Ниже будет показано, почему один тип реактора, обеспечивающий большой выход или лучшее качество продукта, оказывается предпочтительнее другого. Эти химические факторы могут существенно влиять на издержки производства. Имеются и другие, не менее важные факторы, к которым относятся капиталовложения и эксплуатационные расходы, связанные с оплатой рабочей силы, расходом электроэнергии, пара и т. п. Еще одним существенным фактором, не поддающимся денежному выражению, является охрана труда и охрана окружающей среды. Так, при реализации некоторых реакций нитрования, используемых в производстве взрывчатых веществ, технологически выгоднее применять реактор вытеснения, однако реактор смешения лучше удовлетворяет требованию безопасности процесса вследствие более простого регулирования температурного режима.

Эти дополнительные соображения часто могут оказаться причиной выбора иного типа реактора по сравнению с тем, который представляется целесообразным при рассмотрении только химической кинетики процесса.

Обычно при рассмотрении одних кинетических факторов имеется возможность выбора необходимого типа реактора на основе теоретических соображений. В основе этих соображений лежат данные анализа взаимосвязи кинетических факторов процесса и различия между основными типами реакторов. С этой целью анализируют различия в распределении времени пребывания, в характере изменения концентрации и температуре.

Проанализируем некоторые реакции, широко используемые в промышленном синтезе.

Реакции расщепления

Это реакции типа

А®Х®Y (®Z®),

где целевым продуктом является вещество Х, а остальные – нежелательными побочными продуктами. Превращение Х в Y является расщеплением. Такого рода реакции давно известны в органической химии, например, в производстве хлорбензола, нитробензола и т. д. из бензола, когда наблюдается образование также двух- и трехзамещенных соединений, а также во всех случаях, когда могут протекать реакции последовательного замещения.

Типичным примером реакции расщепления другого типа может служить окисление метанола с целью получения формальдегида:

CH3OH+О2®HCHO®CO2.

Аналогичное расщепление может иметь место при окислении аммиака:

NH32®NO®N22О.

Другим примером является реакция типа

Например, при синтезе метанола

CO + 2H2 = CH3OH;

CO + 3H2 = CH4 + H2O.

Химические факторы, влияющие на выбор реактора - student2.ru
Рис. 6.7. Относительный выход реакции расщепления: 1 – в реакторе периодического действия; 2 – в одноступенчатом реакторе смешения (расчет проведен для случая, когда k2/k1=2,0)

В любом типе реактора непрерывного действия неизбежны колебания времен пребывания, и даже, если среднее время пребывания в реакторе будет равно t, всегда найдутся элементы потока, которые пройдут через систему со временем пребывания большим или меньшим оптимального значения. Чем ниже диапазон изменения времени пребывания, тем меньше максимально возможный выход.

Реактор вытеснения, близкий по своим характеристикам к модели идеального вытеснения, несомненно, даст выход ненамного меньший, чем в периодическом процессе. Такие реакторы используют для многих реакций рассмотренного типа, например при окислении метанола на серебряном катализаторе, при производстве этилхлорида и т. д.

Наименьший выход можно ожидать в одноступенчатом реакторе смешения. Проанализируем причины значительного снижения выхода реакции по сравнению с выходом, достигаемым при периодическом процессе. Рассмотрим последовательность реакций вида:

А+В®Х; Х+В®Y.

Пренебрегая изменением объема при реакции, запишем для реактора периодического действия или реактора идеального вытеснения:

Химические факторы, влияющие на выбор реактора - student2.ru ; Химические факторы, влияющие на выбор реактора - student2.ru ,

где аи х – концентрации А и Х соответственно.

Решая эти уравнения, находим

Химические факторы, влияющие на выбор реактора - student2.ru

где а0 – начальная концентрация А;

Химические факторы, влияющие на выбор реактора - student2.ru

Максимальное значение хm достигается в момент tm согласно уравнению

Химические факторы, влияющие на выбор реактора - student2.ru .

При подстановке в предыдущее уравнение получаем

Химические факторы, влияющие на выбор реактора - student2.ru

Предположим, что экономически выгоден такой выход продукта Х, который определяется относительно количества загружаемых в систему реагентов.

Отсюда

Химические факторы, влияющие на выбор реактора - student2.ru

и его максимальное значение получается следующим образом:

Химические факторы, влияющие на выбор реактора - student2.ru

где индекс В означает, что реакция проводится либо в реакторе периодического действия, либо в реакторе идеального вытеснения.

Для реактора смешения

Химические факторы, влияющие на выбор реактора - student2.ru , Химические факторы, влияющие на выбор реактора - student2.ru , Химические факторы, влияющие на выбор реактора - student2.ru

Химические факторы, влияющие на выбор реактора - student2.ru

Это отношение меньше единицы и минимально при r, близком к единице,
т. е. когда константы скорости k1 и k2 почти равны, что имеет место в реакциях последовательного замещения.

В случае, когда r=1, было показано, что выход в реакторе смешения составляет всего 68 % от выхода в реакторе периодического действия. Эффект получается довольно большим и может существенно повлиять на экономию процесса.

Для жидкофазной реакции типа А+В®Х были получены данные, приведенные в табл. 6.1. Как следует из этой таблицы, при одинаковой производительности (и прочих равных условиях) одноступенчатый реактор смешения должен иметь объем в 100 раз, 2-х ступенчатый ‑ 7,9 раза, а 3-х ступенчатый реактор смешения ‑ в 3,8 раза больше объема реактора вытеснения, работающего в режиме, близком к идеальному.

Однако при низких степенях превращения большие различия в объеме, обусловленные необходимостью компенсации проскока, станут значительно меньше. Так, при конверсии 0,90 одноступенчатый реактор смешения окажется только в 10 раз, а 2-х – в 3 раза больше РВНД.

Таблица 6.1. Сравнение относительных объемов реакторов

Реактор Относительныйобъем
Одноступенчатый смешения 100,0
Двухступенчатый смешения 7,9
Трехступенчатый смешения 3,8
Вытеснения 1,0

Реакции полимеризации

Вначале заметим, что реакторы вытеснения редко применяют для проведения реакций полимеризации в основном из-за большой вязкости полимеризующейся жидкости. Исключением является полимеризация этилена под высоким давлением.

Профиль скоростей в таких аппаратах обусловливает довольно широкий диапазон времени пребывания отдельных молекул. В результате этого наблюдается недостаточная степень полимеризации продукта, перемещающегося в непосредственной близости от оси аппарата, и чрезмерная степень полимеризации вещества, движущегося вблизи стенки, что приводит к отложению твердого полимера на стенке аппарата и к постепенному «закоксовыванию» реактора.

Таким образом, для проведения реакции полимеризации

Химические факторы, влияющие на выбор реактора - student2.ru

необходимо сделать выбор между реактором периодического действия (РПД) и реактором смешения непрерывного действия (РСНД). В последнем случае желательно применение многоступенчатых реакторов.

Некоторые реакции полимеризации, например полимеризация стирола, пропилена, этилена и другие, протекают настолько быстро в присутствии катализаторов Циглера-Натта, что, по-видимому, вполне достаточно одноступенчатого реактора смешения.

Выбор между РПД и РСНД зависит, разумеется, от большого числа факторов, из которых одним из самых важных является объем производства. Так, при массовом производстве всегда предпочтительнее непрерывный процесс, однако, при этом необходимо учитывать влияние реактора на качество целевого продукта.

Полимеры никогда не являются химически однородным веществом; они представляют собой смеси веществ, имеющих сходную общую структуру и различные молекулярные массы. Это является естественным следствием вероятностного характера самой реакции: не каждая молекула «активируется» или претерпевает соответствующее соударение в один и тот же момент времени, и поэтому макромолекулы полимера имеют совершенно различную длину цепи. Действительно, если Рi – полимер с числом звеньев i, то мы имеем последовательность реакций типа

М+М®Рi Рi+М®Р2+М®Р3 и т. д.

Отсюда следует, что данный образец полимера характеризуется распределением значения длины цепи вокруг некоторой средней величины, а также самой величиной. Границы этого диапазона зависят от того, используется ли для получения полимера РПД или РСНД. Так как ширина диапазона (широкое молекулярно-массовое распределение) оказывает существенное влияние на различные свойства полимеров, то она может предопределить и выбор самого процесса.

При рассмотрении математической модели процесса полимеризации было установлено, что на распределение молекулярных масс влияют два противоположно действующих фактора, а именно:

- время пребывания новых молекул одинаково в РПД и различно в РСНД;

- характер изменения концентрации во времени и, в частности, то, что в РПД концентрация мономера уменьшается, а на каждой ступени реактора смешения она остается постоянной.

В отношении первого фактора, очевидно, что увеличение диапазона распределения времени пребывания отдельных молекул способствует расширению интервала изменения молекулярных масс. Некоторые растущие полимерные молекулы (макромолекулы) очень быстро «ускользают» из РСНД и не успевают образовывать цепочки значительной длины. Другие же макромолекулы остаются в реакторе длительное время и, следовательно, могут достигать значительной молекулярной массы.

Роль второго фактора менее очевидна. Существенным моментом является то, что в РСНД концентрация мономера остается постоянной и для тех же условий проведения процесса средняя величина ее меньше, чем в РПД. Следствием является уменьшение интервала изменения молекулярных масс в случае многих типов кинетических уравнений реакции полимеризации.

Какой из этих факторов будет превалирующим, зависит от типа реакции получения полимеров. Если в процессе реакции не происходит обрыва цепи, как, например, при поликонденсации, то доминирующим является первый фактор, что приводит к более широкому диапазону изменения молекулярных масс в РСНД по сравнению с РПД. Именно так обстоит дело при поликонденсации мономеров типа НО-(СН2)n-СООН, когда рост цепи происходит в результате реакции этерификации по схеме

НО-(СН2)n-СООН+НО-(СН2)n-СООН®
®НО-(СН2)n-СОО-(СН2)n-СООН+H2O и т. д.

При полимеризации, протекающей с образованием свободных радикалов или ионов, время жизни этих активных центров роста может быть чрезвычайно мало вследствие обрыва цепей, как, например, при реком­бинации двух свободных радикалов. Если среднее время жизни этих центров намного меньше среднего времени пребывания в РСНД, первый фактор не оказывает существенного влияния и доминирует второй фактор.

Для многих разновидностей механизма инициирования и обрыва диапазон изменения молекулярных масс в этих же условиях уже, чем в РПД.

Когда время жизни активного полимерного комплекса велико или когда не происходит обрыв цепи, периодический процесс является наилучшим по сравнению с непрерывным процессом (или РСНД). В случае полимеризации, когда время жизни активного полимерного комплекса мало, в реакторе смешения образуется молекулярно-массовое распределение уже, чем в РПД.

Различие между РПД и РСНД можно продемонстрировать на сополимеризации двух винильных соединений. Если в РПД мономеры, имеющие различные скорости реакции, образуют сополимер переменного состава, то в РСНД процесс протекает с постоянной скоростью, в результате чего образуется сополимер однородного состава.

Параллельные реакции

К параллельным относятся реакции типа

А+В®Х и А+В®Y,

где Х – целевой продукт.

Параллельные реакции являются одной из причин снижения выхода целевого продукта.

Если основная и побочная реакция отличаются своими кинетическими порядками, то создается благоприятная возможность для выбора наиболее приемлемого типа реактора. Этого удается достигнуть потому, что при различных порядках по-разному сказывается влияние концентрации на относительные скорости реакции. Следовательно, в РВНД может быть достигнут как более высокий, так и более низкий выход целевого продукта в зависимости от условий проведения реакции. Предположим, что скорости параллельных реакций

rx=k1f(a, b, х), ry=k2f(a, b, y),

где a, b, х, y – соответственно концентрации исходных веществ и готового продукта.

Тогда

Химические факторы, влияющие на выбор реактора - student2.ru .

Отсюда следует, что условия проведения реакции должны выбираться с таким расчетом, чтобы это отношение было всегда максимальным.

Несомненно, что лучшим способом достижения этой цели является использование селективного катализатора, если его удается подобрать.

Например, может представиться случай, когда скорость первой реакции равна k1×a2×b, а скорость второй – k2×a×b. Тогда их отношение будет равно k1×a/k2. Это означает, что выход продукта Х будет расти с увеличением концентрации реагента А и, кроме того, по мере протекания реакции условия будут становиться все более благоприятными.

Обобщая сказанное, приходим к выводу, что при более высоком порядке основной реакции, по сравнению с побочной, повышение концентрации реагента будет способствовать росту выхода. И, наоборот, если основная реакция имеет более низкий порядок, то выход растет с понижением этой концентрации, в результате чего может быть скомпенсировано соответствующее уменьшение скорости реакции.

В первом примере предпочтение следует отдать реактору периодического действия, или РВНД, поскольку средняя концентрация в них выше, чем в РСПД, при тех же условиях питания.

Если имеются все основания для выбора РСПД, то выход в последнем может быть повышен, хотя и не до уровня, достигаемого в РПД за счет увеличения числа последовательно соединенных ступеней, а при заданном числе ступеней ‑ за счет последовательного увеличения объема каждой последующей ступени, как показано на рисунке 6.8.

Химические факторы, влияющие на выбор реактора - student2.ru
Рис. 6.8. Выбор оптимального РСНД с заданным числом ступеней в случае проведения параллельных реакций: а – основная реакция имеет более низкий порядок по сравнению с побочной; б – основная реакция имеет низкий порядок по сравнению с побочной
Химические факторы, влияющие на выбор реактора - student2.ru
Рис. 6.9. Схема, поясняющая способ поддержания низкой концентрации реагента А путем ступенчатого добавления его в реактор вытеснения (а) или смешения (б)

В том случае, когда порядок основной реакции ниже порядка побочной, концентрация реагента должна быть по возможности минимальной.

Во многих процессах этого достигают простым уменьшением концентрации реагентов на входе в реактор. Однако в других случаях некоторые соображения (например, стоимость регенерации растворителя) могут воспрепятствовать использованию столь простого метода.

В этих условиях РСНД имеет преимущество перед РПД, поскольку в нем низкая концентрация реагента обеспечивается автоматически, особенно в случае небольшого числа последовательно расположенных ступеней и сравнительно большой первой ступени (рис. 6.9).

Наши рекомендации