Титриметрический метод анализа
Общие положения титриметрического метода. В производственной, природоохранной, научной деятельности постоянно приходится выяснять состав того или иного продукта, сырья, природного или искусственного материала. Эти задачи решаются методами аналитической химии. При этом может осуществляться качественный анализ, когда достаточно установить наличие или отсутствие в анализируемой пробе определенных веществ, или количественный анализ, когда выясняют, какие вещества и в каком количестве входят в состав (в виде основного компонента или как примеси) анализируемой пробы.
Одним из наиболее распространенных и точных методов количественного химического анализа является титриметрический метод анализа. Такое название указывает, что при осуществлении метода производят процесс титрования, заключающийся в постепенном прибавлении одного раствора к определённому объему другого раствора. При этом используется то очевидное обстоятельство, что реакция между двумя веществами протекает до тех пор, пока одно из них не будет израсходовано. По уравнению реакции можно рассчитать количество одного из реагентов, если известно, сколько вступило в реакцию другого реагента.
Титриметрический метод количественного анализа основан на точном измерении объемов растворов реагирующих веществ, концентрация одного из которых точно известна (растворы с известной концентрацией называются стандартными*). Определённый объем одного раствора титруют другим раствором. Титрование прекращают, когда вещество в титруемом растворе расходуется полностью в результате происходящей реакции. Этот момент называется точкой эквивалентности и соответствует тому, что количество вещества (число моль) в добавленном растворе (титранте) становится эквивалентным количеству вещества, содержавшемуся в титруемом растворе (момент достижения точки эквивалентности определяют по изменению окраски индикатора — об индикаторах см. далее).
Техника выполнения титрования. Индикаторы. Для прибавления титранта к титруемому раствору используют бюретку — стеклянную узкую и длинную трубку, на которой нанесена градуировка десятых долей миллилитра (см рис. на первой странице обложки). Выпускное устройство снизу бюретки позволяет точно регулировать скорость добавления титранта (от струи до отдельных капель) и точно измерять объем добавленного титранта. В лабораторной практике пользуются обычно бюретками на 25 мл.
Определенное количество титруемого раствора (в большинстве случаев это исследуемый раствор) отмеряют и переносят в коническую колбу. Туда же вливают несколько капель раствора индикатора. К раствору в колбе постепенно добавляют из бюретки титрант (в большинстве случаев и в опытах, выполняемых в данной работе, (но не всегда!) титруемый раствор является исследуемым раствором, а титрант — стандартным). При достижении точки эквивалентности окраска индикатора меняется, титрование прекращают и измеряют по шкале бюретки объем добавленного титранта, значение которого затем используют для расчетов.
Окраска индикатора зависит от концентрации веществ, находящихся в растворе. Например, окраска индикаторов, применяемых в кислотно-осно́вном титровании (методе нейтрализации), зависит от концентрации ионов водорода в растворе:
Индикатор | Цвет раствора | ||
в кислой среде | переходная окраска | в щелочной среде | |
Метиловый оранжевый | розовый | оранжевый | желтый |
Фенолфталеин | бесцветный | красно-фиолетовый | красно-фиолетовый |
Если титровать щелочной раствор кислотой в присутствии метилового оранжевого, то окраска титруемого будет оставаться желтой вплоть до полной нейтрализации щелочного компонента, что и означает достижение точки эквивалентности; при этом индикатор меняет окраску с желтой на оранжевую. Если добавить хотя бы одну каплю избыточной кислоты, окраска становится красно-розовой. В таком случае говорят, что «раствор перетитрован». При этом измеренный по бюретке объем титранта больше, чем объем, в действительности необходимый для нейтрализации; это вносит ошибку в последующие расчеты.
В титрметрии, кроме метода нейтрализации, существуют и другие методы, в которых используются свои индикаторы, меняющие окраску в зависимости от присутствия каких-либо веществ в растворе.
Химический эквивалент и молярная концентрация эквивалента. Какие количества веществ являются эквивалентными друг другу, определяется уравнением реакции. Например, в реакции нейтрализации:
NaOH + HCl = NaCl + H2O
реагируют без остатка 1 моль щелочи и 1 моль кислоты. Но при взаимодействии гидроксида натрия с серной кислотой:
NaOH + ½H2SO4= ½Na2SO4 + H2O
на нейтрализацию 1 моля щелочи достаточно ½ моля серной кислоты. Принято считать, что один моль HCl (как и один моль NaOH) представляет собой один химический эквивалент. В то же время ½ моля серной кислоты также представляет один химический эквивалент. Отсюда следует, что соотношение, при котором вещества прореагируют друг с другом без остатка, надо вычислять не по числу молей этих веществ, а по числу их молей эквивалентов. Таким образом, для выражения содержания веществ в растворах, используемых в титриметрии, удобно использовать концентрацию (см. раздел общей химии «Способы выражения концентраций растворов»), показывающую, сколько молей эквивалента вещества находится в единице объема (одном литре) раствора. Это так называемая молярная концентрация эквивалента (Сн , моль экв/л). Ранее для этой концентрации использовалось название «нормальная концентрация» (единица измерения мг-экв/л), которое в настоящее время исключено из нормативных документов: ГОСТов, методик и т.п. Однако это старое название продолжает широко употребляться в практической работе. Соответственно, характеризуя значение Сн , по-прежнему говорят, что раствор имеет определенную нормальность; например, раствор с концентрацией 2 моль экв/л называют двунормальным, 1 моль экв/л — нормальным, 0,1 моль экв/л — децинормальным и обозначают соответственно 2 н., 1 н., 0,1 н. и т.д. В данном учебном пособии такие термины и обозначения также используются.
Понятие химического эквивалента позволяет учесть, что одна молекула вещества может быть в реакции равноценна двум, трем и даже большему числу молекул другого вещества. Химическим эквивалентом вещества называется такое количество (число моль) или масса этого вещества, которая в химических реакциях эквивалентна (т.е. присоединяет, замещает, выделяет) 1 моль (или 1 г) ионов водорода Н+ или атомарного водорода Н. Для кислот и оснований величина молярной массы химического эквивалента Mэкв, рассчитывается из молярной массы M с учетом числа ионов водорода, отщепляемых молекулой кислоты или числа гидроксид-ионов, отщепляемых молекулой основания при диссоциации:
; .
Таким образом, показывают, какая масса из общей массы моля вещества эквивалентна в реакции одному молю однозарядных ионов. Аналогично, при нахождении молярной массы химического эквивалента отдельного иона, молярную (или атомную) массу иона делят на его заряд z, вычисляя, какая масса приходится на единичный заряд:
.
Расчет эквивалентной молярной массы ионов магния и кальция приведен в подразделе 1.1. при рассмотрении единиц измерения жёсткости.
Расчет концентрации анализируемого раствора. Очевидно, что чем больший объем стандартного раствора титранта Vстанд потрачен на достижение точки эквивалентности и чем больше концентрация этого титранта Cстанд (здесь и далее речь идет только о нормальной концентрации, поэтому индекс «н» в обозначении Cн можно опустить), тем больше концентрация Cx анализируемого титруемого раствора, т.е. при расчете оказывается, что
Cx ~ Cстанд·Vстанд . В то же время, титранта надо затратить тем больше, чем больше взято исходного титруемого раствора; чтобы это учесть, при расчете Cx произведение объема и концентрации затраченного титранта следует отнести к объему титруемого раствора Vx:
.
1.4.2. Определение карбонатной жёсткости воды
Для определения карбонатной жёсткости титруют некоторый объем исследуемой воды стандартным раствором соляной кислоты в присутствии индикатора метилового оранжевого. При этом протекают реакции с гидрокарбонатами:
Ca(HCO3)2 + 2HCl = CaCl2 + 2CO2↑ + 2H2O;
Mg(HCO3)2 + 2HCl = MgCl2 + 2CO2↑ + 2H2O;
и карбонатами:
CaCO3 + 2HCl = CaCl2 + CO2↑ + H2O;
MgCO3 + 2HCl = MgCl2 + CO2↑ + H2O.
При достижении точки эквивалентности, когда прореагируют все карбонаты и гидрокарбонаты, индикатор меняет окраску с желтой на оранжевую.
Поскольку содержание карбонатов обычно во много раз меньше, чем содержание гидрокарбонатов, а именно присутствие последних определяет наличие у воды временной жёсткости, такое определение иногда называют определением временной жёсткости. При этом предполагают, что содержание карбонатов настолько мало, что их вкладом в постоянную жёсткость можно пренебречь.
1.4.3. Определение общей жёсткости воды
При определении общей жёсткости используют метод титрования, который называется комплексонометрическим методом, так как в нем используются вещества с общим названием комплексоны. Один из комплексонов, наиболее широко применяемый —
трилон Б (это торговая марка, под которой впервые был выпущен этот химический продукт). Он представляет производное органической кислоты, в составе молекулы которого присутствуют два атома водорода, способные замещаться на атомы металла. Не рассматривая строения молекулы трилона Б, используем ее общепринятое условное обозначение: H2Y.
Определение основано на том, что ионы кальция и магния образуют растворимые комплексные соединения с Трилоном Б:
Ca2+ + H2Y → [CaY] + 2H+;
Mg2+ + H2Y → [MgY] + 2H+.
В качестве индикаторов используют реактивы, которые дают с определяемыми ионами характерно окрашенные соединения. При достижении точки эквивалентности, когда почти все ионы Ca2+ и Mg2+ связываются с трилоном Б в комплексы и их концентрация в растворе резко уменьшается, окраска раствора меняется. Титрование необходимо проводить в слабощелочной среде (для связывания образующихся ионов водорода), поэтому к титруемому раствору кроме индикатора добавляют так называемый буферный раствор, который обеспечивает постоянство величины pH (при осуществлении данного титрования добавляют аммиачный буферный раствор, который поддерживает постоянство pH в пределах 8…10 единиц).
ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
Содержание работы:
1. Методом кислотно-основного титрования определить карбонатную жёсткость водопроводной воды.
2. Методом комплексонометрического титрования определить общую жёсткость водопроводной воды.
3. По экспериментальным данным сделать вывод об уровне жёсткости исследованной воды и рассчитать величину постоянной жёсткости.
Опыт 1. Определение карбонатной жёсткости
В две конические колбы налить по 100 мл исследуемой (водопроводной) воды (отмерив ее мерным цилиндром), добавить
5-6 капель раствора индикатора метилового оранжевого. Одна из колб является контрольной, т.е. используется, чтобы заметить изменение окраски раствора в другой колбе при титровании. Записать начальный уровень титранта в бюретке.
Перед титрованием убеждаются, что в бюретке достаточно раствора, а стеклянный носик полностью заполнен жидкостью. Пузырьки воздуха из носика выдавливают потоком жидкости, повернув трубку носика вверх под углом около 45°. Выпускное устройство бюретки представляет резиновую трубку со стеклянным шариком внутри. Для вытекания жидкости слегка оттягивают большим и указательным пальцем стенку трубки от шарика, чтобы между ними образовался просвет. Наполняют бюретку через воронку, после чего воронку вынимают из верхнего отверстия; если этого не сделать, во время титрования с воронки может стечь оставшийся в ней раствор, и измерение объема окажется неточным.
При необходимости долить раствор титранта в бюретку, доведя уровень до нулевого деления. Во вторую колбу из бюретки прибавлять 0,1 н. раствор соляной кислоты до перехода окраски индикатора из желтой в оранжевую (получаемый цвет, скорее, можно назвать персиковым).
Поверхность жидкости в бюретке представляется широкой вогнутой полосой (мени́ск). Отсчет значений по шкале производят по нижнему краю мениска, глаз наблюдателя должен находиться на уровне мениска. Титрант из бюретки сначала приливают достаточно быстро, непрерывно перемешивая содержимое колбы вращательными движениями. На шарик надавливают левой рукой, а колбу держат и перемешивают правой рукой. Титрование проводят стоя! За окраской раствора наблюдают, подложив под колбу лист белой бумаги для лучших условий наблюдения. По мере приближения к концу титрования, о чем можно судить по появлению в центре колбы «облачка» розовой окраски, тут же исчезающего при дальнейшем перемешивании, титрант приливают уже по каплям. Раствор должен изменить цвет от прибавления одной определенной капли; в этот момент розовое «облачко» не исчезнет, а распространится по всему раствору.
Чтобы убедиться в отсутствии значительных случайных ошибок при выполнении титрования и при отмеривании объема титруемого раствора, титрование повторяют два-три раза и рассчитывают среднюю величину Vстанд, которую в дальнейшем используют для расчетов.
Записать уровень раствора в бюретке и вычислить объем титранта, пошедший на титрование, как разность конечного и начального отсчетов. Титрование повторить (можно использовать «контрольную колбу»). Рассчитать объем стандартного раствора как среднее по результатам двух титрований. Вычислить карбонатную жёсткость Жкарб исследуемой воды (в ммоль экв/л) по формуле:
,
где СHCl — молярная концентрация эквивалента (нормальность) раствора соляной кислоты; VHCl — объем соляной кислоты, пошедший на титрование; Vисслед — объем исследуемой воды; 1000 — коэффициент перехода от моль экв/л к ммоль экв/л.
Опыт 2. Определение общей жёсткости
Титрование проводят в присутствии индикатора «хром темно-синий». В коническую колбу налить 25 мл исследуемой воды и добавить дистиллированной воды до общего объема 100 мл (отмерять цилиндром). Добавить 5 мл аммиачного буферного раствора и
5-7 капель раствора индикатора хрома темно-синего; при этом раствор приобретает винно-красную окраску.
Записать начальный уровень титранта в бюретке. При необходимости долить раствор титранта в бюретку, доведя уровень до нулевого деления. Из бюретки по каплям прибавлять 0,1 н. раствор трилона Б до изменения окраски раствора от винно-красной до синевато-сиреневой.
В отличие от титрования в первом опыте, где реакция протекает практически мгновенно, взаимодействие трилона Б с кальцием и магнием требует некоторого заметного промежутка времени. Чтобы не пропустить момент достижения точки эквивалентности, титрант с самого начала титрования добавляют отдельными каплями с интервалом в две-три секунды, внимательно наблюдая, не меняется ли окраска титруемого раствора. Если приливать титрант быстрее, то некоторое количество его попадет в уже оттитрованный раствор, который еще не успел поменять окраску; в результате раствор будет перетитрован, а объем пошедший на титрование — завышен.
Записать уровень раствора в бюретке и вычислить объем титранта, пошедший на титрование, как разность конечного и начального отсчетов. Титрование повторить. Рассчитать объем стандартного раствора как среднее по результатам двух титрований. Вычислить общую жёсткость Жобщ исследуемой воды (в ммоль экв/л) по формуле:
,
где СТрБ — молярная концентрация эквивалента (нормальность) раствора трилона Б; VТрБ — объем трилона Б, пошедший на титрование; Vисслед — объем исследуемой воды; 1000 — коэффициент перехода от моль экв/л к ммоль экв/л.
По полученным данным сделать вывод об уровне жёсткости исследованной воды.
Пренебрегая вкладом карбонатов в величину постоянной жёсткости и считая, что в данном случае временная жёсткость воды совпадает с карбонатной жёсткостью, т.е. Жкарб = Жвр, рассчитать постоянную жёсткость воды по разности между общей и временной жёсткостью.
Жпост = Жобщ – Жвр.
КОНТРОЛЬНОЕ ЗАДАНИЕ
1. В 1 л воды содержится 36,47 мг иона магния и 50,1 мг иона кальция. Чему равна жёсткость воды?
2. Вода, содержащая только сульфат магния, имеет жёсткость 7 ммоль экв/л. Сколько граммов сульфата магния содержится в 300 л этой воды?
3. Чему равна карбонатная жёсткость воды, если в 1 л её содержится 0,292 г гидрокарбоната магния и 0,2025 г гидрокарбоната кальция?
КОНТРОЛЬНЫЕ ВОПРОСЫ
1. Какие компоненты определяют жёсткость природной воды?
2. Единицы измерения жёсткости. Градация природных вод по уровню жёсткости.
3. Какую жёсткость называют карбонатной, некарбонатной, временной, постоянной и почему? Какие компоненты определяют каждый из названных видов жёсткости?
4. Вредное действие жёсткости воды.
5. Реагентные методы устранения различных видов жёсткости воды (написать уравнения соответствующих реакций).
6. Что такое иониты? Классификация ионитов по различным критериям. Ионообменные процессы. Различные формы
ионитов.
7. Обессоливание и умягчение воды методом ионного обмена.
8. Два подхода к химическому анализу. Сущность титриметрического метода анализа.
9. Техника работы и используемые устройства при осуществлении титриметрического метода анализа.
10. Формула для расчета концентрации анализируемого раствора в титриметрическом анализе.
11. Применяемые реактивы и индикаторы и уравнения химических реакций при определении карбонатной и общей жёсткости воды.
СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ
Основная
1. Коровин Н. В. Общая химия : учеб. для технич. направ. и спец. вузов. — М. : Высш. шк., 2007. — 556 с. (также предыдущие издания)
2. Глинка Н. Л. Общая химия : учеб. пособие для вузов. — М. : Интеграл-ПРЕСС, 2008. — 728 с. (также предыдущие издания)
3. Дробашева Т. И. Общая химия : учеб. для втузов. — Ростов н/Д : Феникс, 2007. — 448 с.
4. Глинка Н. Л. Задачи и упражнения по общей химии : учеб.
пособие для нехим. специальностей вузов. — М. : Интеграл-ПРЕСС, 2006. — 240 с. (также предыдущие издания)
5. Лидин Р. А. Задачи по неорганической химии : учебн. пособие для хим.-технол. вузов / Р. А. Лидин, В.А. Молочко, Л. Л. Андреева ; под ред. Р. А. Лидина. — М. : Высш. шк., 1990. — 319 с.
Дополнительная
6. Ахметов Н. С. Общая и неорганическая химия : учеб. для вузов — М. : Высш. шк., Изд. центр «Академия», 2001. — 743 с. (также предыдущие издания)
7. Хомченко И. Г. Общая химия : учеб. для нехим. вузов —
М. : Новая Волна; ОНИКС, 2001. — 463 с.
Учебное издание
ХИМИЯ
Лабораторный практикум
В двух частях
Часть 2
Составители Валерий Тарасович Фомичев,
Олег Александрович Кузнечиков, Вера Анатольевна Андронова и др.
Публикуется в авторской редакции
Макет О.А. Кузнечиков
Подписано в печать 25.01.10. Формат 60х84/16.
Бумага офсетная. Печать трафаретная. Гарнитура Таймс.
Уч.-изд. л. 4,80. Усл. печ. л. 5,58. Тираж 200 экз. Заказ № 104
Государственное образовательное учреждение
высшего профессионального образования
«Волгоградский государственный архитектурно-строительный университет»
Отпечатано в полном соответствии с предъявленным авторами оригиналом
в секторе оперативной полиграфии ЦИТ
400074, Волгоград, ул. Академическая, 1
химия
ЛАБОРАТОРНЫЙ ПРАКТИКУМ
В двух частях
Часть 2
Волгоград 2010
* расчет массы одного моля эквивалента вещества или отдельного иона (иногда говорят просто «химического эквивалента» и используют обозначение Э) см. далее в материале к лабораторной работе «Жёсткость воды» (с. 90—91)
*барботирование (барботаж) — пропускание через слой жидкости газа (или пара), подаваемого обычно через распределительное устройство с большим количеством мелких отверстий (барботёр) в нижней части аппарата
*Казимир Фаянс (1887—1975) — американский физикохимик; Н. П. Песков (1880—1940) советский физикохимик, автор монографии «Физико-химические основы коллоидной науки» (1934 г.)
*Ганс Шульце (1853—1892) — немецкий химик, Уильям Гарди (1864—1934) — английский биолог; изучали устойчивость коллоидных растворов
* чтобы упростить изложение, здесь и далее не рассматривается, что MgCO3 реагирует с горячей водой с образованием гидроксида магния и при кипячении воды разложение гидрокарбоната магния происходит по реакции:
Mg(HCO3)2 = Mg(OH)2↓ + 2CO2↑
* по ранее принятой терминологии мг-экв/л
* см. примечание на с. 80
* лигнин — полимерное соединение, составляющее 20-30 % от массы древесины; в промышленности получают как отход при производстве целлюлозы
*используют также термин титрованные растворы, так как для всех растворов, используемых в титриметрии, значение концентрации всегда можно установить путем титрования другим подходящим стандартным раствором