Действие биологических факторов на микроорганизмы.
Влияние факторов окружающей среды на микроорганизмы.
Действие лучистой энергии и ультразвука на микроорганизмы.
Различают неионизирующее (ультрафиолетовые и инфракрасные лучи солнечного света) и ионизирующее излучение (g-лучи и электроны высоких энергий).
Ионизирующее излучение обладает мощным проникающим действием и повреждает клеточный геном. Механизм повреждающего действия: ионизациямакромолекул, что сопровождается развитием мутаций или гибелью клетки. При этом летальные дозы для микроорганизмов выше, чем для животных и растений.
Механизм повреждающего действия УФ-лучей: образование димеров тимина в молекуле ДНК, что прекращает деление клеток и служит основной причиной их гибели. Повреждающее действие УФ-лучей в большей мере выражено для микроорганизмов, чем для животных и растений.
Ультразвук(звуковые волны 20 тыс. гц)обладает бактерицидным действием. Механизм: образование в цитоплазме клетки кавитационных полостей, которые заполняются парами жидкости и в них возникает давление до 10 тыс. атм. Это приводит к образованию высокореактивных гидроксильных радикалов, к разрушению клеточных структур и деполимеризации органелл, денатурации молекул.
Ионизирующее излучение, УФ-лучи и ультразвук используются для стерилизации.
Действие высушивания на микроорганизмы.
Снижение влажности среды приводит к переходу клеток в состояние покоя, а затем и к гибели. Механизм губительного действия высушивания: обезвоживание цитоплазмы и денатурация белков.
Более чувствительны к высушиванию патогенные микроорганизмы. Более устойчивы споры бактерий, цисты простейших, бактерии, защищенные слизью мокроты (туберкулезные палочки).
В практике высушивание используется для консервирования мяса, рыбы, овощей, фруктов, при заготовке лекарственных трав.
Высушивание из замороженного состояния под вакуумом – лиофилизация или лиофильная сушка.Ее используют для сохранения культурмикроорганизмов, которые в таком состоянии годами (10-20 лет) не теряют жизнеспособности и не меняют свойств. Микроорганизмы находятся при этом в состоянии анабиоза. Лиофилизация используется в производстве препаратов из живых микроорганизмов: эубиотиков, фагов, живых вакцин против туберкулеза, чумы, туляремии, бруцеллеза, гриппа и др.
Действие химических факторов на микроорганизмы.
Зависит от природы, концентрации и времени действия химических веществ. Они могут стимулировать рост (используются как источники энергии), оказывать микробицидное, микробостатическое, мутагенное действие или могут быть безразличными для процессов жизнедеятельности
Например: 0,5-2% раствор глюкозы – источник питания для микробов, а 20-40% раствор оказывает угнетающее действие.
Для микроорганизмов необходимо оптимальное значение рН среды. Для большинства симбионтов и возбудителей заболеваний человека – нейтральная, слабощелочная или слабокислая среда. При росте рН сдвигается чаще в кислую сторону, рост микроорганизмов при этом приостанавливается. А затем наступает гибель. Механизм: денатурация ферментов гидроксильными ионами, нарушение осмотического барьера клеточной мембраны.
Действие биологических факторов на микроорганизмы.
Биологические факторы – это различные формы влияния микробов друг на друга, а также действие на микроорганизмы факторов иммунитета (лизоцим, антитела, ингибиторы, фагоцитоз) во время их пребывания в макроорганизме. Совместное существование различных организмов – симбиоз. Выделяют следующие формы симбиоза.
Мутуализм– такая форма сожительства, когда оба партнера получают взаимную выгоду (например, клубеньковые бактерии и бобовые растения).
Антагонизм – форма взаимоотношений, когда один организм наносит вред (вплоть до гибели) другому организму своими продуктами метаболизма (кислоты, антибиотики, бактериоцины), благодаря лучшей приспособленности к условиям среды, путем непосредственного уничтожения (например, нормальная микрофлора кишечника и возбудители кишечных инфекций).
Метабиоз– форма сожительства, когда один организм продолжает процесс, вызванный другим (использует его продукты жизнедеятельности), и освобождает среду от этих продуктов. Поэтому создаются условия для дальнейшего развития (нитрифицирующие и аммонифицирующие бактерии).
Сателлизм– один из сожителей стимулирует рост другого (например, дрожжи и сарцины вырабатывают вещества, способствующие росту других, более требовательных к питательным средам, бактерий).
Комменсализм– один организм живет за счет другого (извлекает выгоду), не причиняя ему вреда (например, кишечная палочка и организм человека).
Хищничество– антагонистические взаимоотношения между организмами, когда один захватывает, поглощает и переваривает другой (например, кишечная амеба питается кишечными бактериями).
Паразитизм – форма антагонистических отношений, когда один организм использует другой для обеспечения своей жизнедеятельности как источник питания и среду для обитания с причинением ему вреда (например, бактериофаги – паразиты бактерий).
Метаболизм
Метаболизм (т. е. обмен веществ и энергии) имеет две составляющих - анаболизм и катаболизм. Анаболизм - синтез компонентов клетки (конструктивный обмен). Катаболизм - энергетический обмен, связан с окислительновосстановительными реакциями, расщеплением глюкозы и других органических соединений, синтезом АТФ. Питательные вещества могут поступать в клетку в растворимом виде (это характерно для прокариот) - осмотрофы, или в виде отдельных частиц - фаготрофы.
Основным регулятором поступления веществ в бактериальную клетку является цитоплазматическая мембрана. Существует четыре основных механизма поступления веществ:
- пассивная диффузия - по градиенту концентрации, энергонезатратная, не имеющая субстратной специфичности;
- облегченная диффузия - по градиенту концентрации, субстратспецифичная, энергонезатратная, осуществляется при участии специализированных белков пермеаз ;
- активный транспорт - против градиента концентрации, субстратспецифичен, энергозатратный (за счет АТФ), вещества поступают в клетку в химически неизмененном виде;
- транслокация(перенос групп) - против градиента концентрации, с помощью фосфотрансферазной системы, энергозатратна, вещества (преимущественно сахара) поступают в клетку в форфорилированном виде.
Основные химические элементы - органогены, необходимые для синтеза органических соединений - углерод, азот, водород, кислород.
В зависимости от источника потребляемого углерода микробы подразделяют на аутотрофы (используют CO2) и гетеротрофы (используют готовые органические соединения). В зависимости от источника энергии микроорганизмы делят на фототрофы и хемотрофы. Если при этом донорами электронов являются неорганические соединения, то это литотрофы, если органические - органотрофы. Если бактериальная клетка в состоянии синтезировать все необходимые для жизнедеятельности вещества, то это прототрофы. Если бактерии нуждаются в дополнительных веществах (факторах роста), то это ауксотрофы. Основными факторами роста для труднокультивируемых бактерий являются пуриновые и пиримидиновые основания, витамины, некоторые (обычно незаменимые) аминокислоты, кровяные факторы (гемин) и др.
Дыхание микроорганизмов
Путем дыхания микроорганизмы добывают энергию. Дыхание- биологический процесс переноса электронов через дыхательную цепь от доноров к акцепторам с образованием АТФ. В зависимости от того, что является конечным акцептором электронов, выделяют аэробное и анаэробное дыхание. При аэробном дыхании конечным акцептором электронов является молекулярный кислород (О2), при анаэробном- связанный кислород (-NO3, = SO4, = SO3).
По типу дыхания выделяют четыре группы микроорганизмов.
1. Облигатные (строгие) аэробы. Им необходим молекулярный (атмосферный) кислород для дыхания.
2. Микроаэрофилы нуждаются в уменьшенной концентрации (низком парциальном давлении) свободного кислорода. Для создания этих условий в газовую смесь для культивирования обычно добавляют CO2,.
3. Факультативные анаэробы могут потреблять глюкозу и размножаться в аэробных и анаэробных условиях. Среди них имеются микроорганизмы, толерантные к относительно высоким (близких к атмосферным) концентрациям молекулярного кислорода - т. е. аэротолерантные, а также микроорганизмы, которые способны в определенных условиях переключаться с анаэробного на аэробное дыхание.
4. Строгие анаэробы размножаются только в анаэробных условиях, т. е. при очень низких концентрациях молекулярного кислорода, который в больших концентрациях для них губителен. Биохимически анаэробное дыхание протекает по типу бродильных процессов, молекулярный кислород при этом не используется.
Аэробное дыхание энергетически более эффективно (синтезируется большее количество АТФ). В процессе аэробного дыхания образуются токсические продукты окисления (H2O2 , О2 ), от которых защищают специфические ферменты, прежде всего каталаза, пероксидаза, пероксиддисмутаза. У анаэробов эти ферменты отсутствуют, также как и система регуляции окислительновосстановительного потенциала (rH2).
АНТАГОНИЗМ МИКРОБОВ
Это биологическая несовместимость микроорганизмов различных видов. Известен со времен Пастера, наблюдавшего подавление развития бацилл сибирской язвы микробами других видов. межродовой тип А. м., по-видимому, имеет место у большинства систематических групп бактерий.
Специфический характер антагонистической активности узкого спектра связан со способностью бактерий продуцировать белковоподобные вещества, способные подавлять рост микробов.
Неспецифический А. м. определяется различной интенсивностью роста бактерий в ассоциациях, особенно при условии одинаковых потребностей в источниках питания. В искусственных условиях могут быть воспроизведены явления «насильственного антагонизма», при к-ром одни микробы вынуждены питаться за счет других вследствие отсутствия иных источников питания.
А. м. постоянно проявляется в ассоциациях бактерий, формирующихся естественным путем в нестерильных полостях организма людей и животных. В итоге изучения антагонистических взаимоотношений между микроорганизмами различных групп особое значение приобрела область учения об антибиотиках.
Общебиологическое значение А. м. в наст, время определяется уровнем исследований, широко проводящихся во всех странах мира в генетическом, биохимическом и экологическом аспектах. Использование микробов-антагонистов широкого спектра активности осуществляется в промышленном производстве антибиотиков; бактериоциногенная активность и способность синтезировать ферменты, разрушающие антибиотики, являются предметом изучения синтетических процессов, детерминируемых внехромосомными генетическими элементами, с большим постоянством выявляемыми у микробов в естественных условиях их обитания. Широкое распространение в природе антагонистов, имеющих селективные преимущества перед чувствительными к ним микробами, может иметь значение в процессах формирования типов микробиоценоза человека и животных.