Тема. Основные положения МКТ строения вещества и её опытное обоснование
03.02.2015
Урок 39 (10 класс)
Тема. Основные положения МКТ строения вещества и её опытное обоснование
1. Задачи курса молекулярная физика и МКТ; макро- и микротела
Для начала давайте вспомним все предыдущие разделы физики, которые мы изучали, и поймём, что всё это время мы рассматривали процессы, происходящие с макроскопическими телами (или объектами макромира). Теперь же мы будем изучать их строение и процессы, протекающие внутри них.
Определение. Макроскопическое тело– тело, состоящее из большого числа частиц. Например: машина, человек, планета, бильярдный шар…
Микроскопическое тело –тело, состоящее из одной или нескольких частиц. Например: атом, молекула, электрон… (рис. 1)
Рис. 1. Примеры микро- и макрообъектов соответственно
Определив таким образом предмет изучения курса МКТ, следует теперь поговорить об основных целях, которые ставит перед собой курс МКТ, а именно:
1. Изучение процессов, происходящих внутри макроскопического тела (движение и взаимодействие частиц)
2. Свойства тел (плотность, масса, давление (для газов)…)
3. Изучение тепловых явлений (нагревание-охлаждение, изменения агрегатных состояний тела)
Изучение этих вопросов, которое будет проходить на протяжении всей темы, начнётся сейчас с того, что мы сформулируем так называемые основные положения МКТ, то есть некоторые утверждения, истинность которых уже давно не подвергается сомнениям, и, отталкиваясь от которых, будет строиться весь дальнейший курс.
Разберём их по очереди:
2. Первое основное положение МКТ; молекулы, атомы
Все вещества состоят из большого количества частиц – молекул и атомов.
Определение.Атом– мельчайшая частица химического элемента. Размеры атомов (их диаметр) имеет порядок см. Стоит отметить, что различных типов атомов, в отличие от молекул, относительно немного. Все их разновидности, которые на сегодняшний день известны человеку, собраны в так называемой таблице Менделеева (см. рис. 2)
Рис. 2. Периодическая таблица химических элементов (по сути разновидностей атомов) Д. И. Менделеева
Молекула– структурная единица вещества, состоящая из атомов. В отличие от атомов, они больше и тяжелее последних, а главное, они обладают огромным разнообразием.
Вещество, молекулы которого состоят из одного атома, называются атомарными, из большего количества – молекулярными. Например: кислород, вода, поваренная соль ( ) – молекулярные; гелий серебро (He, Ag) – атомарные.
Причём следует понимать, что свойства макроскопических тел будут зависеть не только от количественной характеристики их микроскопического состава, но и от качественной.
Если в строении атомов вещество имеет какую-то определённую геометрию (кристаллическую решётку), или же, наоборот, не имеет, то этим телам будут присущи различные свойства. Например, аморфные тела не имеют строгой температуры плавления. Самый известный пример – это аморфный графит и кристаллический алмаз. Оба вещества состоят из атомов углерода.
Рис. 3. Графит и алмаз соответственно
Таким образом «из скольких, в каком взаимном расположении и каких атомов и молекул состоит вещество?» - первый вопрос, ответ на который приблизит нас к пониманию свойств тел.
3. Второе основное положение МКТ
Все частицы находятся в непрерывном тепловом хаотическом движении.
Так же, как и в рассматриваемых выше примерах, важно понимание не только количественных аспектов этого движения, но и качественных для различных веществ.
Молекулы и атомы твёрдых тел совершают лишь небольшие колебания относительно своего постоянного положения; жидких – также совершают колебания, но из-за больших размеров межмолекулярного пространства иногда меняются местами друг с другом; частички газа, в свою очередь, практически не сталкиваясь, свободно перемещаются в пространстве.
4. Третье основное положение МКТ
Частицы взаимодействуют друг с другом.
Взаимодействие это носит электромагнитный характер (взаимодействия ядер и электронов атома) и действует в обе стороны (как притягивание, так и отталкивание).
Здесь: d – расстояние между частицами; a – размеры частиц (диаметр).
Впервые понятие «атом» было введено древнегреческим философом и естествоведом Демокритом (рис. 4). В более поздний период активно задался вопросом о структуре микромира русский учёный Ломоносов (рис. 5).
Рис. 4. Демокрит Рис. 5. Ломоносов
5. Различные варианты обоснования положений МКТ
Для начала вспомним основные положения МКТ, а именно:
1. Все тела состоят из маленьких частиц – молекул и атомов,
2. Эти частицы находятся в постоянном хаотическом движении,
3. Эти частицы непрерывно взаимодействуют между собой.
Так как же получить опытное подтверждение этих утверждений? На самом деле с одним из способов знаком каждый без исключения человек. Это диффузия, или смешивание, говоря простым языком.
Определение. Диффузия– процесс взаимного проникновения молекул одного вещества в пространство между молекулами другого (рис. 6).
Рис. 6. Процесс диффузии в газах
Диффузия может происходить как в газах (мы можем наблюдать этот процесс, чувствуя распространение запахов), в жидкостях (смешивание окрашенной воды разных цветов) и даже в твёрдых телах (если на длительное время положить друг на друга очень гладкие листы стекла или металла, то невозможно будет отличить, где кончается один лист и начинается другой). Более того, существует также смешанная диффузия, то есть проникновение молекул газа в твёрдые и жидкие тела (иначе рыба в воде не могла бы дышать) и т. д. (Рис. 7)
Рис. 7. различные примеры диффузии
Действительно, если предположить, что вещество – некая сплошная структура, становится совершенно непонятно, как объяснить все вышеупомянутые явления.
Однако основным аргументом в объяснении основных положений МКТ является броуновское движение.
6. Описание опыта Броуна
Определение. Броуновское движение– непрерывное тепловое хаотическое движение молекул вещества (Рис. 8).
Этот термин вошёл в обиход после того, как в 1827 г. шотландский ботаник Роберт Броун, смешав пыльцу плавуна с водой и рассмотрев каплю смеси под микроскопом, наблюдал вышеупомянутое движение.
Рис. 8. Траектория частицы при броуновском движении
7. Объяснение опыта Броуна
Однако, так как Броун мог рассмотреть в микроскоп лишь частицы пыльцы, он неправильно трактовал своё открытие (думал, что пыльца живая). Объяснить броуновское движение можно только на основе молекулярно-кинетической теории.
Причина броуновского движения частицы заключается в том, что удары молекул жидкости о частицу не компенсируют друг друга.
На рисунке 8.4 схематически показано положение одной броуновской частицы и ближайших к ней молекул. При беспорядочном движении молекул передаваемые ими броуновской частице импульсы, например слева и справа, неодинаковы. Поэтому отлична от нуля результирующая сила давления молекул жидкости на броуновскую частицу. Эта сила и вызывает изменение движения частицы.
Рис. 9. Броуновская частица пыльцы в воде
Среднее давление имеет определенное значение как в газе, так и в жидкости. Но всегда происходят незначительные случайные отклонения от этого среднего значения. Чем меньше площадь поверхности тела, тем заметнее относительные изменения силы давления, действующей на данную площадь. Так, например, если площадка имеет размер порядка нескольких диаметров молекулы, то действующая на нее сила давления меняется скачкообразно от нуля до некоторого значения при попадании молекулы в эту площадку.
Построение теории броуновского движения и ее экспериментальное подтверждение французским физиком Ж. Перреном окончательно завершили победу молекулярно-кинетической теории. Спустя почти век уже немецкий физик Альберт Эйнштейн (1879-1955) понял, что крупную частицу пыльцы просто-напросто толкают намного более мелкие молекулы воды, которые сами уже непосредственно движутся хаотически (Рис. 9).
Подобные наблюдения можно проводить множеством других способов: капните краской в воду и взгляните на смесь под микроскопом, понаблюдайте за отдельной пылинкой, движущейся у вас в квартире…
8. Доказательство основных положений
Таким образом, наличие броуновского движения полностью подтверждают введённые положения МКТ. Сам факт движения пыльцы подтверждает их. Раз пыльца движется, значит, на неё действуют силы. Единственная возможная причина возникновения этих сил – это соударения каких-либо маленьких тел. Следовательно, уже невозможно сомневаться в первых двух положениях. А так как частица пыльцы меняет своё направление, значит в различные моменты времени количество ударов по пыльце с определённой стороны разное, а значит, нельзя сомневаться и в том, что молекулы воды взаимодействуют друг с другом.
Броуновское движение - тепловое движение, и оно не может прекратиться. С увеличением температуры интенсивность его растет. На рисунке 8.3 приведена схема движения броуновских частиц. Положения частиц, отмеченные точками, определены через равные промежутки времени - 30 с. Эти точки соединены прямыми линиями. В действительности траектория частиц гораздо сложнее.
Броуновское движение можно наблюдать и в газе. Его совершают взвешенные в воздухе частицы пыли или дыма. Красочно описывает броуновское движение немецкий физик Р. Поль (1884-1976): «Немногие явления способны так увлечь наблюдателя, как броуновское движение. Здесь наблюдателю позволяется заглянуть за кулисы
того, что совершается в природе. Перед ним открывается новый мир - безостановочная сутолока огромного числа частиц. Быстро пролетают в поле зрения микроскопа мельчайшие частицы, почти мгновенно меняя направление движения. Медленнее продвигаются более крупные частицы, но и они постоянно меняют направление движения. Большие частицы практически толкутся на месте. Их выступы явно показывают вращение частиц вокруг своей оси, которая постоянно меняет направление в пространстве. Нигде нет и следа системы или порядка. Господство слепого случая - вот какое сильное, подавляющее впечатление производит эта картина на наблюдателя». В настоящее время понятие броуновское движение используется в более широком смысле. Например, броуновским движением является дрожание стрелок чувствительных измерительных приборов, которое происходит из-за теплового движения атомов деталей приборов и окружающей среды.
Опыты Перрена. Идея опытов Перрена состоит в следующем.
Известно, что концентрация молекул газа в атмосфере уменьшается с высотой. Если бы не было теплового движения, то все молекулы упали бы на Землю и атмосфера исчезла бы. Однако если бы не было притяжения к Земле, то за счет теплового движения молекулы покидали бы Землю, так как газ способен к неограниченному расширению. В результате действия этих противоположных факторов устанавливается определенное распределение молекул по высоте, о чем сказано выше, т. е. концентрация молекул довольно быстро уменьшается с высотой. Причем, чем больше масса молекул, тем быстрее с высотой убывает их концентрация.
Броуновские частицы участвуют в тепловом движении. Так как их взаимодействие пренебрежимо мало, то совокупность этих частиц в газе или жидкости можно рассматривать как идеальный газ из очень тяжелых молекул. Следовательно, концентрация броуновских частиц в газе или жидкости в поле тяжести Земли должна убывать по тому же закону, что и концентрация молекул газа. Закон этот известен.
Перрен с помощью микроскопа большого увеличения и малой глубины поля зрения (малой глубины резкости) наблюдал броуновские частицы в очень тонких слоях жидкости. Подсчитывая концентрацию частиц на разных высотах, он нашел, что эта концентрация убывает с высотой по тому же закону, что и концентрация молекул газа. Отличие в том, что за счет большой массы броуновских частиц убывание происходит очень быстро.
Более того, подсчет броуновских частиц на разных высотах позволил Перрену определить постоянную Авогадро совершенно новым методом. Значение этой постоянной совпало с известным.
Все эти факты свидетельствуют о правильности теории броуновского движения и, соответственно, о том, что броуновские частицы участвуют в тепловом движении молекул.
Домашнее задание:
1. Е.В. Коршак, А.И. Ляшенко, В.Ф. Савченко. Физика. 10 класс, «Генеза», 2010. Повторить §39 (с.133-135).
2. Учить лекционный материал.
3. Ответить на вопросы 1-3 (с.136).