Анализ сырьевой муки, клинкера и цемента

Примерный состав сырьевого материала до его добычи может быть определен в трех измерениях при помощи пробного бурения. Это позволяет планировать на будущее план горных работ. Сразу же после добычи сырья его состав определяется методом нейтронной активации, когда материал проходит через конвейерную ленту. Метод основан на взаимодействии между нейтронами и ядрами вещества, подлежащих исследованию. Химический состав затем может быть вычислен из полученного спектра. Метод позволяет определить состав даже неоднородных природных материалов, обеспечивает равномерность состава шихты, высокое качество клинкера и цемента [35, 36, 37]. Для оценки качества сырьевой муки и цементного клинкера могут быть использованы различные способы, как правило, применяются одновременно несколько способов. Химический анализ с помощью анализа рентгеновской флуоресценции (РФА) предоставляет информацию о всей композиции. Из этих данных могут быть вычислены стандартная известь (КН) и модули. Они предоставляют информацию о качестве клинкера.

Кроме того из анализа потенциальное содержание фазы определяются Bogue [5, 53, 54]. Этот расчет предполагает, что клинкерный расплав кристаллизуется в равновесии с твердыми фазами (на практике это не так), и что фазы клинкера химически чистые, имеют стехиометрический фазовый состав (чистые C3S, C2S, С3А, С4AF), не учитываются посторонние ионы и включения в фазах клинкера. Поэтому вычисление содержания фазы по Bogue обеспечивает лишь приблизительный состав, но на практике эти значения немного отличаются. Обычно фактическое содержание алита и белита выше. Фактические содержание алюминатной и ферритной фазы колеблется только на несколько процентов от расчетных значений, потенциальных от содержания. Важным критерием является также содержание свободной извести (содержание свободного, несвязанного СаО). В настоящее время он определяется в основном методом дифракции рентгеновских лучей и лишь эпизодически методом традиционной «мокрой» химии [38, 39]. В связи со стандартом лайма, он обеспечивает индикацию условий производства, дает информацию о степени обжига клинкера. Содержание свободного, несвязанного СаО не может превышать предельного значения, которое составляет порядка 2-3% по массе (в зависимости от условий производства), так как это может привести к известковым трещинам в затвердевшем растворе или бетоне.

В то время как рентгеноструктурный анализ флуоресценции, чтобы определить элементы как в сырьевой муке так и в цементе широко используется, метод дифракции рентгеновских лучей в штатном режиме, как правило, используется только для определения свободной извести CaOсвоб. Последние разработки в использовании рентгеновских лучей для исследования порошков, особенно уточнение Ритвельда, позволяют применять количественный фазовый анализ с использованием рентгеновской дифракции. В случае метода Ритвельда «уточнений наименьших квадратов» расчеты проводились долго до наилучшего совпадения результатов. Но на основе структурных данных и глобальных параметров дифракционной картины не достигается точных данных между измеренным и рассчитанным. Структурные данные, относящиеся к существующим синфазным соединениям смеси, могут меняться из-за различий в химическом составе. Расчет выполняется в итерационном процессе путем изменения параметров структуры кристаллов и профиля. Использование метода Ритвельда стало возможным за счет одновременного анализа отдельных фаз даже с сильно перекрывающимися отражениями, как это часто бывает с цементом. Этот метод предусматривает автоматическую регулировку в промышленных процессах. Ожидается, что он будет включать в себя в будущем стандартный анализ материалов и продукции цементного завода. Ссылки на литературу по методологии Ритвельда приведены в источниках [40,41,42,43,44,45,46,47,48].

Микроскопическое исследование клинкера позволяет установить сведения о характере, форме и распределении фаз клинкера. Массовое содержание фаз клинкера зависит от химического состава клинкера. В противоположность этому, образование и распределение клинкерных фаз зависит от условий производства (состава сырьевой муки, тонкости помола, гомогенности, скорости нагрева шихты, времени спекания и скорости охлаждения клинкера. Опытные специалисты могут определить по микроскопическому изображению клинкера характер влияния плохих условий производства и дать указания по их устранению. Для этого, как правило, проводят исследование полированных и протравленных шлифов в отраженном свете при увеличении х 50 - 1000. Для идентификации фазы и установления их качества используют форму, цвет, отражательную способность минералов, производится травление, определяется твердость и др. показатели [49,50, 51]

На рисунке 1.6 показаны примеры качественных различий в клинкере, которые просто и надежно можно определить путем микроскопического изучения аншлифа. Эти образцы для анализа приготавливают путем закрепления цемента или клинкера в термореактивной смоле и отвержденный образец затем шлифуют и полируют. Дифференциация (определение) различных фаз значительно облегчается с помощью травления. В зависимости от вида используемого травителя и продолжительности травления, выявляются поверхностные границы кристаллов (Anlaufätzung) или частично растворяются границы кристаллов (Lösungsätzung). Микроструктура хорошего качественного клинкера показана на рисунке 1.6а. Отдельные клинкерные фазы (минералы)

Анализ сырьевой муки, клинкера и цемента - student2.ru

а) цемент хорошего рыночного качества

б) слегка старый цемент

с) цемент с сильным поглощением влаги

d) недожженный цементный клинкер

е) алитовый клинкер, охлажденный от высокой температуры

f) цемент с особенно мелкими кристаллами алита.

Рисунок 1.6 - Качественно различные образцы цементных клинкеров (травление с 1,2-циклогександиамин-N, N, N ', N'-этилендиаминтетрауксусной кислоты-ди-натриевой соли)

имеют острые края (прямые грани, углы), показывают характерную окраску и имеют обычные размеры. Образец клинкера на рисунке 1.6б, однако, был сохранен слишком влажным. В кристаллах видны преобразованные кромки, признак того, что гидратация уже началась. Края кристаллов алита сильно разъедены. Тупые грани, однообразие цвета и границы фазы размыты, что характерно для недостаточно обожженного клинкера (рисунок 1.6d). Чрезмерно высокая температура, от которой производится резкое охлаждение клинкера, может привести к разрушению кристаллов алита (рисунок 1.6е). На рисунке 1.6f можно увидеть особенно мелкие кристаллы алита. Этот цемент будет иметь высокие показатели прочности, как и образец цемента на рисунке 1.6а.

Несмотря на высокую точность, клинкерная микроскопия все меньше используется на практике из-за сложности методики подготовки проб, а также необходимости большого опыта персонала для оценки качества образцов.

Минералогический состав клинкера может быть определён различными методами: петрографическим, рентгеноструктурным анализом и химическим методом.

Петрографический анализ проводится в основном четырьмя приёмами: 1) иммерсионным методом (метод порошков); 2) в прозрачных шлифах; 3) в полированных шлифах; 4) в прозрачно - полированных шлифах. Метод позволяет определить морфологические особенности клинкера - количество и распределение фаз, габитус, спайность, двойникование кристаллов, пористость; детали внутренней структуры - показатели преломления, анизотропия, окраска минералов, кристаллографические константы, сингония.

При петрографическом анализе полированных шлифов из наиболее характерных гранул клинкера приготавливают аншлиф и рассматривают его с помощью поляризационного микроскопа. Определяют содержание минералов, их размеры, структуру и др.

На Шымкентском и Карагандинском цементных заводах в свое время был внедрён оперативный петрографический анализ качества клинкеров, разработанный сотрудниками кафедры ХТВМ Казахского химико – технологического института Л.Г.Трофимовой, Р.А.Сайкуловым и Б.Т.Таймасовым. Он позволял оперативно контролировать качество клинкера, прогнозировать его активность и регулировать на основе этого работу обжиговых агрегатов. Внедрение разработки в АО «Карагандацемент» повысило уровень качества клинкера на 4…5 МПа, что позволило увеличить ввод шлака на 3 % и сократить расход клинкера. В АО «Шымкентцемент» внедрение метода увеличило среднюю марку цемента 0,5 МПа, повысило производительность печей, снизило расход топлива и уменьшило выход брака.

Петрографический анализ показывает фактический минералогический состав клинкера. Рациональный химический анализ клинкера позволяет определить его химический состав, на основании которого с помощью формул можно определить расчётный минералогический состав клинкера. Расчётный и фактический состав немного отличаются. Причины расхождения следующие: 1) при обжиге и охлаждении клинкера не достигается полного равновесия фаз, остаются свободные СаО и SiO2; 2) фактический состав минералов отличается от расчётного состава соединений, так состав алита и белита отличаются от состава трёхкальциевого и двухкальциевого силикатов, аналогично и минералы - плавни; 3) минералы образуют твёрдые растворы; 4) значительные изменения в теоретический состав клинкера вносят щёлочи.

Как правило, фактическое содержание алита в клинкерах всегда превышает расчётное, фактическое содержание С3А меньше, чем его расчётное количество.

Производство цемента

Нарисунке 1.7 показана схема производства цемента, включающая в себя такие взаимосвязанные операции как дробление, измельчение сырья, классификацию, просеивание, гомогенизацию, сушку сырьевой смеси, нагревание, высокотемпературный обжиг и охлаждение клинкера.

Технологический процесс производства цемента состоит из трех основных стадий:

- добыча сырьевых материалов, дробление, усреднение сырья, тонкий помол сырья, корректировка и гомогенизация сырьевой муки, приготовление угольного порошка;

- обжиг сырьевой муки с получением клинкера, охлаждение клинкера;

- помола клинкера с добавками гипса с получением портландцемента, хранение, упаковка и поставка цемента потребителям.

Далее подробно рассматриваются отдельные этапы технологии производства цемента. Всеобъемлющая информация доступна в [53, 54, 55, 56].

Сырье и топливо

В сырье и топливе основное различие имеется между первичными и вторичными используемыми материалами. Первичными материалами являются любые природные вещества, которые были подвергнуты обработке перед использованием в производстве цемента, например, уголь, бурый уголь, газ, известняк, глина, песчаник и т.д.). Вторичные материалы имеют промышленное происхождение. Они образуются в качестве отходов промышленных процессов, таких как отработанные автомобильные шины, отходы пластмассы, осадки сточных вод, формовочный песок из литейных производств и т.д. Исключением является нефтяной кокс, который несмотря на предыдущую конверсию, относится к основным материалам, а не к вторичному топливу.

Анализ сырьевой муки, клинкера и цемента - student2.ru

Рисунок 1.7 - Технологическая схема с производства цемента [52]

Сырьевые материалы

В связи с высокими потоками сырьевой массы цементные заводы в первую очередь располагаются вблизи источников сырья. Рисунок 1.8 показывает месторождения полезных ископаемых и участки расположения цементных заводов в Германии. Камень, который имеет нужный химический состав, однородную текстуру для получения цементного клинкера (естественная смесь известняка и глины – мергель) редко встречается в природе в достаточном количестве. Скорее всего встречается сырье – осадочные отложения, которые, как правило, содержат много других компонентов, помимо необходимого известняка и глины.

Известняки и глины это отложения, которые встречаются в больших количествах только в морской зоне. Они образуются в результате выветривания остатков или растворения существующих пород или новообразованиями путем отложения микроорганизмов. Под давлением со стороны верхних слоев эти рыхлые материалы затвердевают в осадочных породах (диагенеза). Оригинальные горизонтальные отложения, как правило, нарушаются тектоническими процессами. Поэтому отложения (пласты) материалов, например, наклонены, сложены или сломаны. Расположение и локальные изменения необходимо учитывать при производстве.

Известняки состоят, в основном, из карбоната кальция, в ее наиболее устойчивой модификации в форме кальцита. Кроме того, они часто содержат магний, алюминий и железо в карбонатных и силикатных соединениях и SiО2 (диоксид кремния, обычно в виде кварца).

Глины обломочные (греч:Broken) отложения, они состоят в основном из преобразованных частиц других пород. Основными компонентами глин являются алюмосиликаты со слоистой структурой. Примерами глинистых минералов являются иллит, монтмориллонит, каолинит и галлуазит. В дополнение к глинистым минералам глины содержат кварц, кальцит, гипс, лимонит, пирит, полевой шпат, углеродсодержащие компоненты. Они могут быть включены среди других в различных соотношениях. Глины в основном сбрасывались в море и всегда были в очень тонко измельченной форме.

Естественная смесь глины и известняка называется мергель (мергели бывают глинистые и известковые). Для того, чтобы производить цемент в качестве основных компонентов требуются известняки (носитель CaO), алюмосиликатный компонент (носитель SiО2 и А12O3), а также корректирующая добавка – носитель Fe2O3. Они должны быть тщательно смешаны в соответствии с их собственным и желаемым химическим составом клинкера. Важными факторами, наряду с другими, являются также тонкость и однородность сырья (сырьевой муки), поскольку в процессе обжига клинкера происходят реакции между сосуществующими фазами. В большой реакционной способности сырьевой шихты играют роль удельная поверхность и гомогенное распределение минеральных фаз: чем выше гомогенность, тем выше скорость процессов клинкерообразования за счет быстрой диффузии анионов и катионов. Материалы, состав которых в их естественном виде (мергель) уже близок к тому, что в клинкере, являются более благоприятными в их реакционной способности, потому что в них уже природой составлена очень мелкокристаллическая и однородная смесь. В противоположность этому, смеси, составленные из чистого сырья известняка и глины, ведут себя во время обжига менее благоприятно.

Оксиды SiО2, Al2O3 и Fe2O3 обычно вносятся в состав сырьевой смеси глинистой породой (глина, мергель, песок и содержащие сырье материалы, такие как песок или песчаный мергель, известняк). Эти компоненты приводят иногда к неблагоприятно высокой концентрации, в частности, щелочей - K2О, Na2О, сульфатов (например, гипса CaSО4·2Н2О) и в более низких количествах

Анализ сырьевой муки, клинкера и цемента - student2.ru

Рисунок 1.8- Расположение цементных заводов в Германии [62]

примесей хлора. Они могут привести к трудностям в процессе обжига клинкера.

Если в сырьевой шихте, состоящей из известняка и глины, не достигнут заданный желаемый химический состав, то необходима дополнительная корректировка состава сырьевой смеси путем добавления необходимых оксидов в нужных количествах. В корректирующих добавках необходимые вещества, например железо, должны находиться в относительно высоких концентрациях и не включать какие-либо нежелательные компоненты, такие как щелочи и тяжелые металлы в высоких концентрациях. Они служат для точной настройки химического состава сырьевой шихты и улучшения ее спекаемости. Для этого используются, например, огарки и железная руда, кварцевый песок и др. В печной системе циклично может происходить критическое накопление летучих тяжелых металлов, таких как Ti, As, Pb и Hg. Коллапс (выгорание) цепей может привести к увеличению выбросов. Таким образом, состояние цепной завесы во время обжига клинкера необходимо строго контролировать и, при необходимости, прерывать сбросы загрязняющих веществ [57, 58, 59, 60, 61].

Отходы

Для защиты природных ресурсов и экологически безопасной утилизации промышленных побочных продуктов в последние годы в производстве цемента широко используются вторичные материалы. В зависимости от химического состава они могут заменить различные компоненты сырьевой смеси для получения клинкера. Выбор наиболее часто используемого вторичного сырья показан ниже в таблице 1.8. Использование вторичного сырья контролируется специальной процедурой утверждения, при этом особое внимание уделяется на содержание тяжелых металлов [58 63 64].

Таблица 1.8 - Вторичное сырье для производства цемента [64]

Наши рекомендации