Классификация Эрлангера-Гассера

Билеты к экзамену

1. Природа мембранного потенциала покоя нейрона.

Потенциал покоя – это разность между электрическими потенциалами внутри и вне клетки в состоянии покоя.

Величина ПП варьируется в пределах 30-90 мВ.

ПП составляет основу возбуждения и переработки информации нервной клеткой, обеспечивает регуляцию деятельности внутренних органов и опорно-двигательного аппарата посредством запуска процессов возбуждения и сокращения в мышце.

Главным ионом, обеспечивающим формирование ПП, является ион К+. В покоящейся клетке устанавливается динамическое равновесие между числом выходящих из клетки и входящих в клетку ионов К+. Электрический и концентрационный градиенты противодействуют друг другу: согласно концентрационному градиенту К+ стремиться выйти из клетки, а отрицательный заряд внутри клетки и положительный заряд наружной поверхности клеточной мембраны препятствуют этому. Когда концентрационный и электрический градиенты уравновесятся, число выходящих из клетки ионов К+ становится равным числу входящих ионов К+ в клетку. В этом случае на клеточной мембране устанавливается равновесный калиевый потенциал.

В создании ПП принимают участие и другие ионы: Na+, Cl¯, Ca²+.

Проницаемость клеточной мембраны в покое для Na+ очень низка. Ионы Na+ согласно концентрационному и электрическому градиентам стремятся и в небольшом количестве проходят внутрь клетки. Это ведет к уменьшению ПП, т.к. на внешней поверхности клеточной мембраны суммарное число положительно заряженных ионов уменьшается, а часть отрицательных ионов внутри клетки нейтрализуется входящими в клетку положительно заряженными ионами Na+.

Влияние Cl¯ на величину ПП противоположно влиянию Na+. Cl¯ согласно концентрационному градиенту стремиться и проходит в клетку. Концентрации ионов К+ и Cl¯ близки между собой. Но Cl¯ находится в основном вне клетки, а К+ - внутри клетки. Препятствует входу Cl¯ в клетку электрический градиент, поскольку заряд внутри клетки отрицательный, как и заряд Cl¯. Наступает равновесие сил концентрационного градиента, способствующего входу Cl¯ в клетку, и электрического градиента, препятствующего входу Cl¯ в клетку. При поступлении Cl¯ внутрь клетки число отрицательных зарядов вне клетки несколько уменьшается, а внутри клетки увеличивается: Cl¯ добавляется к крупным анионам белковой природы, находящимся внутри клетки. Таким образом, Cl¯, проникая внутрь клетки, увеличивает ПП.

Наружная и внутренняя поверхности клеточной мембраны несут собственные электрические заряды. Фиксированные наружные отрицательные заряды, нейтрализуя положительные заряды внешней поверхности мембраны, уменьшают ПП. Фиксированные внутренние отрицательные заряды клеточной мембраны, напротив, суммируясь с анионами внутри клетки, увеличивают ПП. Ионы Ca²+ взаимодействуют с наружными отрицательными фиксированными зарядами мембраны клетки, что ведет к увеличению и стабилизации ПП.

В целом ПП – это алгебраическая сумма не только всех зарядов ионов вне и внутри клетки, но и отрицательных внешних и внутренних поверхностных зарядов самой клеточной мембраны.

2. Природа потенциала действия нейрона.

ПД – это электрофизиологический процесс, выражающийся в быстром колебании мембранного потенциала покоя вследствие перемещения ионов в клетку и из клетки и способный распространятся без затухания.

ПД обеспечивает передачу сигнала между нервными клетками, между нервными центрами и рабочими органами, в мышцах ПД обеспечивает процесс электромеханического сопряжения.

Величина ПД колеблется в пределах 80-130 мВ. Амплитуда ПД не зависит от силы раздражения, она всегда максимальна для данной клетки в конкретных условиях: ПД подчиняется закону «все или ничего», но не подчиняется закону силы.

При малом раздражении клетки ПД либо совсем не возникает, либо достигает максимальной величины, если раздражение является пороговым или сверхпороговым.

Выделяют три фазы ПД:

1. деполяризация – исчезновение заряда клетки (уменьшение мембранного потенциала до нуля)

2. инверсия – изменение заряда клетки на обратный, когда внутренняя сторона мембраны клетки заряжается положительно, а внешняя – отрицательно

3. реполяризация – восстановление исходного заряда клетки, когда внутри клетки заряд снова становится отрицательным, а снаружи – положительным.

Фаза деполяризации: При действии деполяризующего раздражителя на клетку (например, электрического тока) начальная деполяризация клеточной мембраны происходит без изменения ее проницаемости для ионов. Когда деполяризация достигает примерно 50% порогового потенциала, возрастает проницаемость мембраны клетки для Na+. Условием, обеспечивающим вход Na+ в клетку, является увеличение проницаемости клеточной мембраны, которая определяется состоянием воротного механизма Na–каналов (расположен на внешней и внутренней сторонах клеточной мембраны). Когда деполяризация клетки достигает критической величины – 50 мВ, проницаемость мембраны для Na+ резко возрастает: открывается большое число Na-каналов и Na+ лавиной устремляется в клетку. В результате интенсивного тока Na+ внутрь клетки процесс деполяризации проходит очень быстро. В итоге ПП (потенциал покоя) исчезает, становится равным нулю. Фаза деполяризации на этом заканчивается.

Фаза инверсии: После исчезновения ПП вход Na+ в клетку продолжается, поэтому число положительных ионов в клетке больше числа отрицательных ионов, заряд внутри клетки становится положительным, снаружи – отрицательным. Теперь электрический градиент препятствует входу Na+ внутрь клетки (положительные заряды отталкиваются друг от друга), Na-проводимость снижается. Тем не менее некоторое время Na+ продолжает входить в клетку, о чем свидетельствует продолжающее нарастание ПД. Это означает, что концентрационный градиент, обеспечивающий движение Na+ в клетку, сильнее электрического, препятствующего входу Na+ в клетку. Примерно через 0,5-2 мс после начала деполяризации рост ПД прекращается в результате закрытия Na и открытия K-каналов, т.е. вследствие увеличения проницаемости для K+ резкого возрастания выхода его из клетки. K+ выталкивается положительным зарядом из клетки и притягивается отрицательным зарядом снаружи клетки. Так продолжается до полного исчезновения положительного заряда внутри клетки – до конца фазы инверсии.

Фаза реполяризации связана с тем, что проницаемость клеточной мембраны для K+ все еще высока, K+ продолжает быстро выходить из клетки. Поскольку клетка теперь снова внутри имеет отрицательный заряд, а снаружи – положительный, электрический градиент препятствует выходу K+ из клетки, что снижает его проводимость, хотя он продолжает выходить. Часто в конце ПД наблюдается замедление реполяризации, что объясняется уменьшением проницаемости клеточной мембраны для K+.

Главную роль в возникновении ПД играет Na+, обеспечивающий всю восходящую часть пика ПД.

3. Изменения возбудимости нервного волокна при генерации потенциала действия.

При генерации ПД возбудимость нервного волокна меняется, причем эти изменения соответствуют определенной фазе ПД.

№п/п Фаза изменения возбудимости Фаза ПД Механизм изменения возбудимости Суть и значение
Кратковременное повышение возбудимости В начале развития ПД, когда после действия раздражителя возникла некоторая деполяризация, но не достигла критического уровня (регистрируется только локальный потенциал) Возбудимость повышена, потому что произошла частичная деполяризация, открывается часть Na-каналов. В результате мембранный потенциал приблизился к критическому уровню деполяризации.  
Фаза абсолютной рефрактерности Соответствует пику ПД и продолжается в период реполяризации до достижения критического уровня деполяризации плюс-минус 10 мВ. В фазу деполяризации и восходящей фазы инверсииневозбудимость объясняется тем, что потенциалзависимые m-ворота Na-каналов уже открыты, остальные открываются под влиянием деполяризации, и Na быстро поступает в клетку. Поэтому дополнительное раздражение не может повлиять на движение Na. В период нисходящей фазы инверсии и реполяризацииневозбудимость объясняется тем, что инактивационные h-ворота Na-каналов закрываются, в результате клеточная мембрана непроницаема для Na. В то же время в большом количестве открываются К-каналы, К быстро выходит из клетки. Полная невозбудимость (возбудимость = 0). Наличие абсолютной рефрактерности не позволяет отдельным ПД накладываться друг на друга и ограничивает максимальную частоту разрядов нервных клеток величиной 500—700 имп/с (реже — до 1000 имп/с: с такой частотой могут возбуждаться нейроны ретикулярной формации, толстые миелиновые нервные волокна ЦНС).
Фаза относительной рефрактерности. Соответствует конечной части фазы реполяризации и следовой гиперполяризации до возвращения мембранного потенциала к исходному уровню после гиперполяризации. В фазе реполяризацииповышенная проницаемости мембраны для К и избыточный выход К из клетки препятствует возможной деполяризации, поэтому нужно приложить более сильное раздражение, чтобы вызвать возбуждение. В период следовой гиперполяризациимембранный потенциал больше и, следовательно, дальше отстоит от критического уровня деполяризации, поэтому также требуется бОльший раздражитель для возбуждения. Период восстановления возбудимости. Сильное раздражение может вызвать новое возбуждение.
Фаза экзальтации Соответствует следовой деполяризации. Возбудимость повышена, т.к. вследствие частичной следовой деполяризации мембранный потенциал несколько меньше обычного и, следовательно, ближе к уровню критической деполяризации, что объясняется повышенной проницаемостью мембраны для Na. Период повышенной возбудимости. Возможна в тех клетках, где происходит следовая деполяризация, например, в нейронах ЦНС. Очередной ПД можно вызвать более слабым раздражением.

Скорость протекания фазовых изменений возбудимости клетки определяет ее лабильность. Лабильность, или функциональная подвижность, - скорость протекания одного цикла возбуждения, т.е. ПД. Лабильность, как и ПД, зависит от скорости перемещения ионов в клетку и из клетки, которая, в свою очередь, зависит от проницаемости клеточной мембраны. При этом особое значение имеет длительность рефрактерной фазы: чем она больше, тем ниже лабильность.

Мерой лабильности является максимальное число ПД, которое ткань может воспроизвести в 1 с. Лабильность тканей существенно различается. Так, лабильность нерва равна 500-1000 имп/с, мышцы – около 200 имп/с, нервно-мышечного синапса – порядка 100 имп/с.

Лабильность ткани понижается при длительном бездействии органа и при утомлении, а также в случае нарушения иннервации. При постепенном увеличении частоты ритмического раздражения лабильность ткани повышается. Это явление было открыто в 1923г. А.А. Ухтомским и получило название усвоение ритма раздражения.

4. Распространение возбуждения по нервному волокну.

Потеннциал действия или нервный импульс может возникать в любой точке возбудимой мембраны нервного или мышечного волокна и способен распространяться вдоль ее поверхности. При этом роль потенциала действия заключается в передаче информации по нервным волокнам от тела нейрона к нервному окончанию. Когда потенциалы действия достигают терминалей аксона, то информация передается на другие нейроны благодаря выделению из нервных окончаний молекул медиаторов. В мышечных клетках потенциалы действия распространяются по сарколемме и активируют механизм сокращения мышц.

ЗАКОНЫ ПРОВЕДЕНИЯ ВОЗБУЖДЕНИЯ

• Бездекрементное проведение возбуждения. Амплитуда ПД в различных участках нерва одинакова, то есть проведение возбуждения по нервному волокну осуществляется без затухания (бездекрементно). Таким образом, кодирование информации осуществляется не за счёт изменения амплитуды ПД, а путём изменения их частоты и распределения во времени.

• Изолированное проведение возбуждения. Нервные стволы обычно образованы большим количеством нервных волокон, однако ПД, идущие по каждому из них, не передаются на соседние. Эта особенность нервных волокон обусловлена: ? наличием оболочек, окружающих отдельные нервные волокна и их пучки (в результате образуется барьер, предупреждающий переход возбуждения с волокна на волокно); ? сопротивлением межклеточной жидкости (жидкость, находящаяся между волокнами, имеет гораздо меньшее сопротивление току, чем мембрана аксонов; поэтому ток шунтируется по межволоконным пространствам и не доходит до соседних волокон).

• Физиологическая и анатомическая целостность. Необходимым условием проведения возбуждения является не только его анатомическая целостность, но и нормальное функционирование мембраны нервного волокна (физиологическая целостность). В клинике широко применяют различные ЛС, нарушающие физиологическую целостность нервных волокон. Так, эффекты местных анестетиков (новокаин, лидокаин, и др.) основаны на блокаде потенциалозависимых Na+ каналов. Нарушение физиологической целостности чувствительных нервных волокон вызывает анестезию (потерю чувствительности).

5. Типы нервных волокон, их физиологические различия.

Имеется два типа нервных волокон – миелинизированные и немиелинизированные. Оболочку немиелинизированных волокон образуют шванновские клетки (если волокно покрыто оболочкой шванновской клетки). Оболочку миелинизированных волокон в периферической нервной системе формируют шванновские клетки, а в ЦНС – олигодендроциты. Миелиновая оболочка через равные промежутки прерывается, образуя свободные от миелина участки – узловые перехваты Ранвье. Миелиновая оболочка нервных волокон выполняет изолирующую функцию, обеспечивает более экономное и быстрое проведение возбуждения.

Классификация Эрлангера-Гассера

Является наиболее полной классификацией нервных волокон по скорости проведения нервного импульса.

Тип волокна Функция Диаметр, мкм Скорость проведения, м/с Миелинизация
Афферентные — мышечные веретёна, сухожильные органы; эфферентные — скелетные мышцы 10-20 60-120 +
Афферентные — тактильное чувство; коллатерали Aα волокон к интрафузальным мышечным волокнам 7-15 40-90 +
Эфферентные — мышечные веретёна 4-8 15-30 +
Афферентные — температура, быстрое проведение боли 3-5 5-25 +
B Симпатические, преганглионарные; постганглионарные волокна цилиарного ганглия 1-3 3-15 прерывистая
C Симпатические, постганглионарные; афферентные — медленное проведение боли 0,3-1 0,5-2 -

Классификация по Ллойду

Классифицирует только афферентные нейроны.

Тип волокна Функция Диаметр, мкм Скорость проведения, м/с Миелинизация
Ia Мышечные веретёна 18-22 90-120 +
Ib Сухожильные рецепторы 15-18 60-90 +
II Механорецепторы кожи, вторичные мышечные веретёна 7-15 40-90 +
III Рецепторы связок 1-5 3-25 прерывистая
IV Болевые рецепторы, рецепторы соединительной ткани 0,1-1 0,5-2 -

6. Синаптическая передача сигнала.

Каждый многоклеточный организм, каждая ткань, состоящая из клеток, нуждается в механизмах, обеспечивающих межклеточные взаимодействия. Как же осуществляются межнейронные взаимодействия? По нервной клетке информация распространяется в видепотенциалов действия. Передача возбуждения с аксонных терминалей на иннервируемый орган или другую нервную клетку происходит через межклеточные структурные образования - синапы(от греч. «Synapsis»-соединение, связь).

Основные элементы синапса

Классификация Эрлангера-Гассера - student2.ru

Синапс - представляет собой сложное структурное образование, состоящее из пресинаптической мембраны (чаще всего это концевое разветвление аксона), постсинаптической мембраны (чаще всего это участок мембраны тела или дендрита другого нейрона), а так же синаптической щели.

Синапс настолько узок, что его строение можно изучать только в электронный микроскоп. Цитоплазма в месте контакта уплотнена с обеих сторон или только в постсинаптической клетке. Сигнал передается от пресинаптической части к постсинаптической. Между ними находится синаптическая щель шириной 0,02—0,03 мкм. Диаметр синапса 1—2 мкм и менее .

В пресинаптической окончании находятся небольшие мембранные пузырьки — везикулы. Диаметр везикул может составлять 0,02—0,06 мкм и более; их форма сферическая или уплощенная. Везикулы наполнены физиологически активными веществами — медиаторами.Для каждого конкретного нейрона параметры образуемых им синапсов (размер щели, диаметр и форма везикул, количество молекул медиатора в везикуле) постоянны.

Понятие синапс было введено английским физиологом Ч. Шеррингтоном в 1897 году, для обозначения функционального контакта между нейронами. Следует отметить, что еще в 60-х годах прошлого столетия И.М. Сеченов подчеркивал, что вне межклеточной связи нельзя объяснить способы происхождения даже самого нервного элементарного процесса. Чем сложнее устроена нервная система, и чем больше число составляющих нервных мозговых элементов, тем важнее становится значение синаптических контактов.

Классификация Эрлангера-Гассера - student2.ru Схематическое изображение синапсов с химическими (А), электрическими (Б) и смешанными (В) механизмами передачи

Механизм передачи через синапс долгое время оставался невыясненным, хотя было очевидно, что передача сигналов в синаптической области резко отличается от процесса проведения потенциала действия по аксону. Однако в начале XX века была сформулирована гипотеза, что синаптическая передача осуществляется или электрическим или химическим путем. Электрическая теория синаптической передачи в ЦНС пользовалась признанием до начала 50-х годов, однако она значительно сдала свои позиции после того, как химический синапс был продемонстрирован в ряде периферических синапсов. Так, например, А.В. Кибяков, проведя опыт на нервном ганглии, а также использование микроэлектродной техники для внутриклеточной регистрации синаптических потенциалов нейронов ЦНС позволили сделать вывод о химической природе передачи в межнейрональных синапсах спинного мозга. Микроэлектродные исследования последних лет показали, что в определенных межнейронных синапсах существует электрический механизм передачи. В настоящее время стало очевидным, что есть синапсы, как с химическим механизмом передачи, так и с электрическим. Более того, в некоторых синаптических структурах вместе функционируют и электрический и химический механизмы передачи - это так называемые смешанные синапсы.

Электрические синапсы.

Электрические синапсы представляют собой довольно плотные контакты между клетками (ширина синаптической щели всего около 2 нм), благодаря чему нервный импульс «перескакивает» с пресинаптической на постсинаптическую мембрану. Дополнительно в электрическом синапсе между пресинаптической и постсинаптической мембраной существуют т.н.мостики, представляющие собой белки-каналы, через которые могут проходить мелкие молекулы и ионы. Благодаря таким каналам не происходит потерь сигнала в результате утечки электрического тока через внеклеточную среду. Вследствие этого изменения потенциала в пресинаптическом окончании могут передаваться на постсинаптическую мембрану практически без потерь.

Электрические синапсы и их морфологический субстрат - щелевые контакты- были обнаружены в самых разных отделах нервной системы беспозвоночных и низших позвоночных животных. В мозге млекопитающих также встречаются электрические синапсы. Они обнаружены в стволе головного мозга: в ядре тройничного нерва, в вестибулярном ядре Дейтерса, в нижней оливе продолговатого мозга.

Проведение возбуждения в таких синапсах осуществляется быстро, с небольшой задержкой или даже без задержки. Электрические синапсы обладают как односторонним, так и двусторонним проведением возбуждения. Это легко доказать при регистрировании электрического потенциала на синапсе: при раздражении афферентных путей мембрана синапса деполяризуется, а при раздражении эфферентных волокон - гиперполяризуется. Оказалось, что синапсы нейронов с одинаковой функцией обладают двусторонним проведением возбуждения (например, синапсы между двумя чувствительными клетками). В таких синапсах ток возможен в обоих направлениях, но иногда сопротивление в одном из направлений выше, чем в другом (выпрямляющий эффект). Синапсы между разнофункциональными нейронами (сенсорные и моторные) обладают односторонним проведением. Электрические синапсы позволяют синхронизировать активность групп нейронов, они дают возможность получать постоянные, стереотипные реакции при многократных воздействиях, т.к. они в меньшей степени, чем химические синапсы, подвержены метаболическим и прочим влияниям.

Химические синапсы.

Химические синапсы - это функциональные контакты между клетками, передачу сигналов в которых осуществляют специальные химические вещества посредники – медиаторы.

Классификация Эрлангера-Гассера - student2.ru

Рассмотрим, как осуществляется химическая, синаптическая передача. Схематично это выглядит так: импульс возбуждения, достигает пресинаптической мембраны нервной клетки (дендрита или аксона), в которой содержатся синаптические пузырьки, заполненные особым веществом - медиатором (от латинского «Media»- середина, посредник, передатчик). Пресинаптическая мембрана содержит много кальциевых каналов. Потенциал действия деполяризует пресинаптическое окончание и, таким образом, изменяет состояние кальциевых каналов, вследствие чего они открываются. Так как концентрация кальция (Са2+) во внеклеточной среде больше, чем внутри клетки, то через открытые каналы кальций проникает в клетку. Увеличение внутриклеточного содержания кальция, приводит к слиянию пузырьков с пресинаптической мембраной. Медиатор выходит из синаптических пузырьков в синоптическую щель. Синаптическая щель в химических синапсах довольно широкая и составляет в среднем 10-20 нм. Здесь медиатор связывается с белками - рецепторами, которые встроены в постсинаптическую мембрану. Связывание медиатора с рецептором начинает цепь явлений, приводящих к изменению состояния постсинаптической мембраны, а затем и всей постсинаптической клетки. После взаимодействия с молекулой медиатора рецепторактивируется, заслонка открывается, и канал становится проходимым или для одного иона, или для нескольких ионов одновременно.

Следует отметить, что химические синапсы отличаются не только механизмом передачи, но также и многими функциональными свойствами. Например, в синапсах с химическим механизмом передачи продолжительность синоптической задержки, то есть интервал между приходом импульса в пресинаптическое окончание и началом постсинаптического потенциала, у теплокровных животных составляет 0,2 - 0,5мс. Также, химические синапсы отличаются односторонним проведением, то есть медиатор, обеспечивающий передачу сигналов, содержится только в пресинаптическом звене. Учитывая, что в химических возникновениях синапсах возникновение постсинаптического потенциала обусловлено изменением ионной проницаемости постсинаптической мембраны, они эффективно обеспечивают как возбуждение, так и торможение.

Сравнение химического и электрического синапсов:

Наши рекомендации