Осушка газа молекулярными ситами

Для глубокой осушки применяют молекулярные сита, обыч­но называемые цеолитами. Цеолиты представляют собой слож­ные неорганические полимеры с кристаллической решет­кой. Форма кристалла цеолита — куб. На каждой из его шести сторон выполнены щели, через которые влага прони­кает во внутреннее пространство. Каждый цеолит имеет свой размер щелей, образованных атомами кислорода (от 3 ∙10 -7 до 10∙10 -7 мкм). Благодаря этому цеолиты способны сорбировать в основном мелкие молекулы, т. е. при адсорбции происходит отсеивание более мелких молекул от более крупных. Мелкие молекулы проникают во внутреннее про­странство кристалла и застревают в нем, а крупные молеку­лы не проходят и, следовательно, не будут сорбироваться. Цеолиты, применяемые в виде порошка или гранул с разме­рами до 3 мм, обладают высокой пористостью (до 50 %) и огромной поверхностью пор. Их активная поглотительная способность достигает 14— 16 г воды на 100 г цеолита при парциальном давлении 50 Па и превышает активность силикагеля и оксида алюминия почти в 4 раза. Необходимо отметить высокую поглощающую способность цеолитов при низкой относительной влажности газа или при малом пар­циальном давлении водяных паров, что обеспечивает осуш­ку газа до очень низкой точки росы (до 173 К).

Преимуществом молекулярных сит является их хорошая поглотительная способность при высоких температурах (до 373 К она уменьшается весьма незначительно). В то же вре­мя поглотительная способность силикагеля и боксита уже при температуре 311 К снижается в несколько раз, а при температуре 373 К практически равна нулю.

Для регенерации молекулярных сит используется сухой газ, нагретый до 473 — 573 К, который пропускают через слой цеолита в направлении, обратном движению газа при осуш­ке. При глубокой осушке газа с большой начальной влажно­стью возможна двухступенчатая схема с применением обыч­ных осушителей (гликолей и бокситов) и молекулярных сит. Цеолиты выдерживают до 5000 циклов, теряя при этом около 30 % своей поглотительной способности.

ОСУШКА ГАЗА ОХЛАЖДЕНИЕМ

Охлаждение широко применяется для осушки газа, выделе­ния конденсата из газа газоконденсатных месторождений на установках низкотемпературной сепарации, а также для полу­чения индивидуальных компонентов газа, выделения из при­родного газа редких газов, сжижения газов и т. д. Низкотем­пературный способ разделения газов позволяет в зависимости от глубины охлаждения извлекать от 80 до 100 % тяжелых углеводородов и осушать газ при транспортировке однофазно­го компонента до необходимой точки росы по влаге и углево­дородам. На практике применяют низкотемпературную сепа­рацию (НТС), при которой получают относительно невысокие температуры как за счет использования пластового давления, так и искусственного холода. Детандер (поршневой или тур­бинный) позволяет получить более глубокое охлаждение газа, а также продлить срок службы установок НТС. Применение искусственного холода (холодильных машин) в установках НТС позволяет обрабатывать газ до конца разработки месторожде­ния, но при этом капитальные вложения в обустройство про­мысла увеличиваются в 1,5 — 2,5 раза [39].

Принципиальная технологическая схема НТС приведена на рис. 4.18. Сырой газ из скважины поступает на установку комплексной подготовки, где после предварительного дроссе­лирования (или без него) направляется в сепаратор первой ступени 3 для отделения от капельной жидкости. Затем газ направляется в теплообменник 5 для охлаждения газом, по­ступающим в межтрубное пространство из низкотемператур­ного сепаратора 7. Из теплообменника газ поступает через эжектор 6 или штуцер в низкотемпературный сепаратор 7, в котором за счет понижения температуры в теплообменнике и на штуцере (эжекторе) выделяется жидкость. Осушенный газ поступает в теплообменник 5, охлаждает продукцию сква­жины и направляется в промысловый сборный коллектор. Нестабильный конденсат и водный раствор ингибитора (на­пример, диэтиленгликоля ДЭГ), предотвращающий образова­ние гидратов, из сепаратора первой ступени 3 поступают в конденсатосборник 4 и далее в емкость 10. Здесь происходит разделение конденсата и водного раствора ДЭГа. Затем кон­денсат через теплообменник 9 подается в поток газа перед низкотемпературным сепаратором, а водный раствор ДЭГа направляется через емкость 11 и фильтр 12 для очистки от механических примесей в регенерационную установку 13, после чего регенерированный гликоль из установки с помо­щью насоса 19 подается в шлейфы для предотвращения обра­зования гидратов в них. Поток нестабильного углеводородно­го конденсата и водного раствора ДЭГ направляется в разде­лительную емкость 15 через межтрубное пространство тепло­обменников, где охлаждает нестабильный конденсат, посту­пающий из емкости 10 для впрыскивания в газовый поток.

Водный раствор гликоля через фильтр поступает в уста­новку регенерации 14, после чего насосом 19 подается в газовый поток перед теплообменником 5. Конденсат из раз­делительной емкости 15 направляется через межтрубное про­странство теплообменника 18 в деэтанизатор 16. Установка деэтанизации состоит из тарельчатой колонны, печи 17 и теплообменника 18. Заданная температура в нижней части деэтанизатора поддерживается с помощью теплообменника18, в котором стабильный конденсат (нижний продукт деэтанизатора), подогретый в печи 17 до температуры 433 К, отдает тепло насыщенному конденсату, поступающему из емкости 15. Охлажденный стабильный конденсат подается в конденсатопровод. По схеме предусматривается также ввод части холодного нестабильного конденсата на верхнюю та­релку стабилизатора. В этом случае деэтанизатор работает в режиме абсорбционноотпарной колонны.

осушка газа молекулярными ситами - student2.ru
Рис. 4.18. Технологическая схема НТС на газосборном пункте

Если предусматривается транспортировка конденсата в же­лезнодорожных цистернах, то стабилизация конденсата про­водится в ректификационной колонне, работающей в режи­ме либо частичной, либо полной дебутанизации. Газ выветри­вания (дегазации) из емкости 15 и газ деэтанизатора 16 через штуцер поступает в общий поток.

Если давление невысокое, то предусматривают компрес­сор 8. Газ дегазации из емкости 10 также возвращается в общий поток. Периодический контроль за дебитами газа и жидкости осуществляется с помощью сепаратора 1, на вы­кидной линии которого установлены замерная диафрагма и конденсатосборник-разделитель 2 со счетчиками.

Если на устье скважины температура газа достаточно вы­сокая и на его пути до газосборного пункта гидраты не образуются, то схема подготовки газа упрощается. На период добычи, когда требуются дополнительные источники холода на установке НТС для обеспечения требуемой точки росы газа, в схеме вместо штуцера устанавливают турбодетандер. При использовании турбодетандера эффект по снижению температуры в 3 — 4 раза больше, чем при обычном дроссели­ровании. В этом случае в схеме предусматривается сепаратор второй ступени, предназначенный для отделения жидкости от газа, поступающего в турбодетандер. Осушенный газ из межтрубного пространства теплообменника 5 поступает на прием компрессора, установленного на одном валу с турбодетандером, и далее в промысловый коллектор.

Возможны модификации описанной схемы в соответствии с конкретными условиями. В частности, дополнительно к теп­лообменнику 5 устанавливают воздушный или водяной холо­дильник. По мере снижения пластового давления для поддер­жания постоянной температуры сепарации газа на установках НТС требуется последовательное увеличение поверхности теп­лообменников, что приводит к необходимости перестройки установки. Однако наступает такой период, когда это становится нерациональным. В таком случае производится охлажде­ние либо применяют другие способы подготовки газа.

Эффективность работы НТС любого типа существенно зависит от технологического режима эксплуатации скважи­ны. В проектах разработки за оптимальное давление сепара­ции на газоконденсатных месторождениях принимается дав­ление максимальной конденсации, которое для каждого со­става газа определяется экспериментальным путем. Для обес­печения однофазного движения газа по магистральному газо­проводу температура сепарации выбирается с учетом тепло­вого режима работы газопровода.

ОДОРИЗАЦИЯ ГАЗА

Природный газ, очищенный от сероводорода, не имеет ни цвета, ни запаха. Поэтому обнаружить утечку газа довольно трудно. Чтобы обеспечить безопасность транспорта и исполь­зования газа, его одорируют, т. е. специально придают резкий и неприятный запах. Для этой цели в газ вводят одоранты, к которым предъявляются следующие требования. Продукты сго­рания одорантов должны быть физиологически безвредными, достаточно летучими (низкая температура кипения), не долж­ны вызывать коррозию, химически взаимодействовать с газом, поглощаться водой или углеводородным конденсатом, сильно сорбироваться почвой или предметами, находящимися в поме­щениях. Одоранты должны быть недорогими. Этим требовани­ям в наибольшей степени удовлетворяет этилмеркаптан. Одна­ко при его использовании следует учитывать все присущие ему недостатки. Так, по токсичности он равен сероводороду. Поэтому если газ идет на химическую переработку, то необхо­димо проводить очистку от меркаптана, так как меркаптан отравляет катализаторы. Этилмеркаптан химически взаимодей­ствует с оксидами металлов, вследствие чего при транспорте одорированного газа запах его постепенно ослабевает [37].

Кроме этилмеркапатана также используют сульфан, метил-меркаптан, пропилмеркаптан, калодорант, пенталарам и др. В качестве одоранта применяют смесь меркапатнов, получаемых при очистке природного газа с высоким содержанием серы и сернистых соединений. Одоризацию газа проводят на головных сооружениях газопровода и газораспределительных станциях. Концентрация паров одоранта в газе должна быть такой, чтобы резкий запах ощущался при объемной концентрации газа, не превышающей 1/5 от нижнего порога взрываемости. Среднегодовая норма расхода этилмеркаптана составляет 16 г на 1000 м3 газа. В летнее время расход одоранта примерно в 2 раза меньше, чем зимой.

Устройства, при помощи которых одорант вводится в поток газа, называются одоризаторами. Различают капельные, испа­рительные, барботажные и полуавтоматические одоризаторы.

Капельными одоризаторами одорант вводится в газопровод каплями или тонкой струей (рис. 4.19). Одоризатор действует за счет перепада давления, создаваемого диафрагмой. Одорант из поплавковой камеры проходит через диафрагму, смотровое стекло и по трубке поступает в газопровод. В поплавковой камере все время сохраняется постоянный уровень. Расход одоранта можно изменять при помощи сменной диафрагмы.

осушка газа молекулярными ситами - student2.ru Рис. 4.19. Капельный одоризатор с диафрагмой: / — бачок для одоранта; 2 — фильтр-отстойник; 3 — поплавок; 4 — поплав ковая камера; 5, 8 — соединительные трубки; 6 — тонкая диафрагма; 7 — смотровое стекло; 9 — диафрагма в газопроводе; 10 — газопровод; 11 — ручной насос; 12 — запасная емкость

Наибольшее распространение получили испарительные (фи­тильные) и барботажные одоризаторы.

Рассмотрим принцип действия испарительного одоризатора (рис. 4.20). В резервуар с одорантом частично погружены фланелевые полосы. Над поверхностью одоранта между фла­нелевыми полосами проходит газ и насыщается одорантом. Резервуар снабжен подогревателем (на схеме не показан). Температура одоранта, от которой зависит интенсивность испарения, а следовательно, и степень одоризации, поддер­живается терморегулятором.

осушка газа молекулярными ситами - student2.ru
Рис. 4.20. Испарительный (фитильный) одоризатор:
1 — диафрагма; 2 — газопровод; 3 — резервуар; 4 — вертикально подве­шенные фитили; 5 — регулировочный вентиль; 6 — мерное стекло

Барботажный одоризатор представлен на рис. 4.21. Из га­зопровода 3 часть газа попадает в барботажную камеру 2, в которой происходит насыщение газа одорантом, поступаю­щим из расходного бака 13. При помощи поплавкового регу­лятора в барботажной камере поддерживается постоянный уровень. Отсюда газ через емкость одоризатора 17 поступает в газопровод за диафрагмой 1, создающей перепад давления для прохождения газа через одоризатор. Капли неиспарившегося одоранта, захватываемые газом из барботажной камеры, оседают на дно емкости 17. Накапливающийся там одорант сливается через кран 20. Регулирование степени одоризации осуществляется вентилем 19.

Однако для рассмотренных одоризаторов характерно от­сутствие прямой пропорциональной зависимости расхода одоранта от расхода газа, так как ввод одоранта происходит под действием меняющегося столба жидкости, не зависящего от количества проходящего газа. При колебании расхода в тече­ние суток часто приходится менять режим работы установки. Регулировку выполняют вручную игольчатым вентилем, поэтому точность дозирования зависит от опытности обслужи­вающего персонала.

На некоторых газораспределительных станциях внедрены полуавтоматические установки одоризации газа, которые просты по конструкции, надежны в работе и обеспечивают практи­чески полную пропорциональную зависимость расхода одоранта от расхода газа. Установка работает следующим обра­зом (рис. 4.22). На пути газового потока в газопроводе уста­новлена диафрагма 9, на которой создается определенный перепад давления в зависимости от расхода газа. Газ с давле­нием P1 до диафрагмы поступает в бачок 3 с одорантом и создает давление р2 на столб одоранта, равное р1 — рgН0. Одорант из бачка 3 через фильтр 2 и калибровочное стекло 1 впрыскивается в газопровод за диафрагмой с давлением р2. Давление впрыскивания меняется в зависимости от количе­ства газа, проходящего через диафрагму, и этим достигается пропорциональность расхода одоранта и газа. Уровнемерное стекло 4 используется для наблюдения за расходом одоранта. Емкость 8, предназначенная для заполнения бачка деодоран­том, снабжена предохранительным клапаном 5. Давление заполнения бачка поддерживается редуктором 7 и контролиру­ется по манометру 6. При монтаже фланец с соплом крепит­ся к фланцу задвижки 10, что позволяет заменять и чистить сопла. Изменение степени одоризации достигается за счет изменения диаметра сопла. Степень одоризации определяет­ся хроматографическим методом

осушка газа молекулярными ситами - student2.ru
Рис. 4.22. Полуавтоматическая одоризационная установка

.

Наши рекомендации