Характерные дефекты и износы
Больше всего парогенераьоры подвержены коррозии. Под воздействием горячего пара даже нержавеющая сталь быстро разрушается при привышении норм эксплуотации установки, а во время её длительного простоя все елементы постепенно разрушаются во влажной среде. Более всего коррозии подвержены патрубок отвода перегретого пара и главный паровой коллектор. А если оборудование находится в резерве или в стадии консервации, то при плохом соблюдении технологии и не достаточной степени осушки, подвергается стояночной коррозии и выходит из строя.
Известно, что коррозия протекает на границе металл — рабочее тело (металл — теплоноситель). Она приводит к частичному или полному разрушению кристаллической решетки и соответствующему изменению свойств металла. Это разрушение может вызываться различными причинами: химическими, электрохимическими, механическими, влиянием нейтронного поля и других факторов.
Стояночная коррозия является самым распространенным видом разрушения котельного металла. Ей подвергаются все элементы котлов, изготовленные из углеродистых и низколегированных сталей, которые контактируют с водой практически с любым содержанием в ней кислорода. Однако, на практике коррозия приобретает опасный характер лишь при содержании кислорода в питательной воде, превышающем 10-20 мкг/кг. Коррозия, как правило, проявляется в виде язв с диаметром до 5 – 10 мм, зачастую покрытых рыхлым слоем ржавчины. При простаивании котлов коррозия практически захватывает все элементы паровых котлов, где имеется кислород и влага.
Коррозионные повреждения металлов парогенераторов обусловлены действием одного или нескольких факторов: чрезмерного теплонапряжения поверхности нагрева, вялой циркуляции воды, застоя пара, напряженного металла, отложения примесей и других факторов, препятствующих нормальному омыванию и охлаждению поверхности нагрева.
При отсутствии этих факторов нормальная магнетитная пленка легко образуется и сохраняется в воде с нейтральной или умеренно щелочной реакцией среды, не содержащей растворенного кислорода. В присутствии же О2 кислородной коррозии могут подвергаться входные участки водяных экономайзеров, барабаны и опускные трубы циркуляционных контуров. Особенно отрицательно сказываются малые скорости движения воды (< 0,3 м/сек)в водяных экономайзерах, так как при этом пузырьки выделяющегося воздуха задерживаются в местах шероховатостей внутренней поверхности труб и вызывают интенсивную местную кислородную коррозию. Коррозия углеродистой стали в водной среде при высоких температурах включает две стадии: начальную электрохимическую и конечную химическую. Согласно этому механизму коррозии, ионы двухвалентного железа диффундируют через окисную пленку к поверхности контакта ее с водой, реагируют с гидроксилом или с водой с образованием гидрата закиси железа, который затем распадается на магнетит и водород по реакции:
. |
Электроны, проходящие наряду с ионами железа через окисную пленку, ассимилируются ионами водорода с выделением Н2. С течением времени толщина окисной пленки увеличивается, а диффузия через нее затрудняется. Вследствие этого наблюдается уменьшение скорости коррозии со временем.
Нитритная коррозия. При наличии в питательной воде нитрита натрия наблюдается коррозия металла парогенератора, имеющая по внешнему виду большое сходство с кислородной коррозией. Однако в отличие от нее нитритная коррозия поражает не входные участки опускных труб, а внутреннюю поверхность теплонапряженных подъемных труб и вызывает образование более глубоких язвин диаметром до 15–20 мм.Нитриты ускоряют протекание катодного процесса, а тем самым и коррозию металла парогенератора. Течение процесса при нитритной коррозии может быть описано следующей реакцией:
. |
Гальванокоррозия металла парогенератора. Источником гальванокоррозии парообразующих труб может явиться медь, попадающая в парогенераторы в тех случаях, когда питательная вода, содержащая повышенное количество аммиака, кислорода и свободной углекислоты, агрессивно воздействует на латунные и медные трубы регенеративных подогревателей. Необходимо отметить, что гальванокоррозию может вызвать лишь металлическая медь, отложившаяся на стенках парогенератора. При поддержании значения рН питательной воды выше 7,6 медь поступает в парогенераторы в форме окислов или комплексных соединений, которые не обладают коррозионно-агрессивными свойствами и отлагаются на поверхностях нагрева в виде шлама. Ионы меди, присутствующие в питательной воде с низким значением рН, попадая далее в парогенератор, в условиях щелочной среды также осаждаются в виде шламообразных окислов меди. Однако под действием выделяющегося в парогенераторах водорода или избытка сульфита натрия окислы меди могут полностью восстанавливаться до металлической меди, которая, отложившись на поверхностях нагрева, приводит к электрохимической коррозии металла котла.
Подшламовая (ракушечная) коррозия. Подшламовая коррозия возникает в застойных зонах циркуляционного контура парогенератора под слоем шлама, состоящего из продуктов коррозии металлов и фосфатной обработки котловой воды. Если эти отложения сосредоточены на обогреваемых участках, то под ними возникает интенсивное упаривание, повышающее солесодержание и щелочность котловой воды до опасных значений.
Подшламовая коррозия распространяется в виде больших язвин диаметром до 50–60 ммна внутренней стороне парообразующих труб, обращенной к факелу топки. В пределах язвин наблюдается сравнительно равномерное уменьшение толщины стенки трубы, часто приводящее к образованию свищей. На язвинах обнаруживается плотный слой окислов железа в виде ракушек. Описанное разрушение металла получило в литературе название «ракушечной» коррозии. Подшламовая коррозия, вызываемая окислами трехвалентного железа и двухвалентной меди, является примером комбинированного разрушения металла; первая стадия этого процесса является чисто электрохимической, а вторая – химической, обусловленной действием воды и водяного пара на перегретые участки металла, находящиеся под слоем шлама. Наиболее эффективным средством борьбы с «ракушечной» коррозией парогенераторов является предотвращение возникновения коррозии тракта питательной воды и выноса из него окислов железа и меди с питательной водой.
Щелочная коррозия. Расслоение пароводяной смеси, которое имеет место в горизонтальных или слабонаклонных парообразующих трубах, как известно, сопровождается образованием паровых мешков, перегревом металла и глубоким упариванием пленки котловой воды. Образовавшаяся при упаривании котловой воды высококонцентрированная пленка содержит в растворе значительное количество щелочи. Едкий натр, присутствующий в котловой воде в малых концентрациях, защищает металл от коррозии, но он становится весьма опасным коррозионным фактором, если на каких-либо участках поверхности парогенератора создаются условия для глубокого упаривания котловой воды с образованием повышенной концентрации NaOH.
Концентрация едкого натра в упариваемой пленке котловой воды зависит:
а) от степени перегрева стенки парообразующей трубы по сравнению с температурой кипения при данном давлении в парогенераторе, т.е. величины ?ts;
б) величин соотношений концентрации едкого натра и содержащихся в циркулирующейся воде натриевых солей, обладающих способностью сильно повышать температуру кипения воды при данном давлении.
Если концентрация хлоридов в котловой воде значительно превышает в эквивалентном отношении концентрацию NaOH, то раньше чем последняя достигает в упаривающейся пленке опасных значений, содержание хлоридов в ней настолько возрастает, что температура кипения раствора превышает температуру перегретой стенки трубы, и дальнейшее выпаривание воды прекращается. Если же котловая вода содержит преимущественно едкий натр, то при величине ?ts = 7 °С концентрация NaOH в пленке концентрированной воды составляет 10 %, а при
?ts = 30 °C достигает 35 %. Между тем экспериментальным путем установлено, что уже 5–10-процентные растворы едкого натра при температуре котловой воды выше 200 °С способны интенсивно корродировать металл обогреваемых участков и сварных швов с образованием рыхлой магнитной закись-окиси железа и одновременным выделением водорода. Щелочная коррозия имеет избирательный характер, продвигаясь вглубь металла преимущественно по зернам перлита и образуя сетку межкристаллитных трещин. Концентрированный раствор едкого натра способен при высоких температурах также растворять защитный слой окислов железа с образованием феррита натрия NaFeO2, который гидролизуется с образованием щелочи:
(2.6) | |
(2.7) |
Вследствие того, что щелочь в этом круговом процессе не расходуется, создается возможность непрерывного протекания коррозионного процесса. Чем выше температура котловой воды и концентрация едкого натра, тем интенсивнее протекает процесс щелочной коррозии. Установлено, что концентрированные растворы едкого натра не только разрушают защитную магнетитную пленку, но и тормозят ее восстановление после повреждения.
Источником щелочной коррозии парогенераторов могут также явиться шламоотложения, способствующие глубокому упариванию котловой воды с образованием высококонцентрированного коррозионно-агрессивного раствора щелочи. Уменьшение относительной доли щелочи в общем солесодержании котловой воды и создание преобладающего содержания в последней таких солей, как хлориды, способны резко ослабить щелочную коррозию котельного металла. Устранение щелочной коррозии достигается также обеспечением чистоты поверхности нагрева и интенсивной циркуляцией на всех участках парогенератора, которая предотвращает глубокое упаривание воды.
Межкристаллитная коррозия. Межкристаллитная коррозия появляется в результате взаимодействия котельного металла со щелочной котловой водой. Характерная особенность межкристаллитных трещин в том, что они возникают в местах наибольших напряжений в металле. Механические напряжения слагаются из внутренних напряжений, возникающих в процессе изготовления и монтажа парогенераторов барабанного типа, а также дополнительных напряжений, возникающих в процессе эксплуатации. Образованию межкристаллитных кольцевых трещин на трубах способствуют дополнительные статические механические напряжения. Они возникают в трубных контурах и в барабанах парогенератора при недостаточной компенсации температурных удлинений, а также вследствие неравномерного обогрева или охлаждения отдельных участков тела барабана или коллектора.
Межкристаллитная коррозия протекает с некоторым ускорением: в начальный период разрушение металла происходит очень медленно и без деформации, а затем с течением времени скорость его резко возрастает и может принять катастрофические размеры. Межкристаллитную коррозию котельного металла нужно рассматривать прежде всего как частный случай электрохимической коррозии, протекающей по границам зерен напряженного металла, находящегося в контакте со щелочным концентратом котловой воды. Появление коррозионных микрогальванических элементов вызывается различием потенциалов между телами кристаллитов, выполняющих роль катодов. Роль анодов выполняют разрушающиеся грани зерен, потенциал которых вследствие механических напряжений металла в этом месте сильно понижен.
Наряду с электрохимическими процессами существенную роль в развитии межкристаллитной коррозии играет атомарный водород, продукт разряда
Н+-ионов на катоде коррозионных элементов; легко диффундируя в толщу стали, он разрушает карбиды и создает большие внутренние напряжения в металле котла вследствие появления в нем метана, что приводит к образованию тонких межкристаллитных трещин (водородное растрескивание). Кроме того, во время реакции водорода с включениями стали образуются различные газообразные продукты, что в свою очередь вызывает дополнительные разрывные усилия и способствует разрыхлению структуры, углублению, расширению и разветвлению трещин.
Основным путем предотвращения водородной коррозии металла котла является устранение любых коррозионных процессов, приводящих к образованию атомарного водорода. Это достигается ослаблением наноса в парогенераторе окислов железа и меди, химической очисткой котлов, улучшением циркуляции воды и снижением местных повышенных тепловых нагрузок поверхности нагрева.
Установлено, что межкристаллитная коррозия котельного металла в соединениях элементов парогенераторов возникает лишь при одновременном наличии местных растягивающих напряжений, близких или превышающих предел текучести, и при концентрации NаОН в котловой воде, накапливающейся в неплотностях соединений элементов котла, превышающей 5–6 %. Для развития межкристаллитных разрушений котельного металла существенное значение имеет не абсолютная величина щелочности, а доля едкого натра в общем солевом составе котловой воды. Установлено опытным путем, что если эта доля, т. е. относительная концентрация едкого натра в котловой воде составляет менее 10–15 % от суммы минеральных растворимых веществ, то такая вода, как правило, не является агрессивной.
Пароводяная коррозия. В местах с дефективной циркуляцией, где пар застаивается и не сразу отводится в барабан, стенки труб под паровыми мешками подвергаются сильному местному перегреву. Это приводит к химической коррозии перегретого до 450 °С и выше металла парообразующих труб под действием высокоперегретого пара. Процесс коррозии углеродистой стали в высокоперегретом водяном паре (при температуре 450 – 470 °С) сводится к образованию Fe3O4 и газообразного водорода:
(2.8.) |
Отсюда следует, что критерием интенсивности пароводяной коррозии металла котла является увеличение содержания свободного водорода в насыщенном паре. Пароводяная коррозия парообразующих труб наблюдается, как правило, в зонах резкого колебания температуры стенки, где имеют место теплосмены, вызывающие разрушение защитной окисной пленки. При этом создается возможность непосредственного контакта перегретого металла трубы с водой или водяным паром и химического взаимодействия между ними.
Коррозионная усталость. В барабанах парогенераторов и котельных трубах в том случае, если на металл воздействуют одновременно с коррозионной средой термические напряжения, переменные по знаку и величине, появляются глубоко проникающие в сталь трещины коррозионной усталости, которые могут иметь транскристаллитный, межкристаллитный либо смешанный характер. Как правило, растрескиванию котельного металла предшествует разрушение защитной окисной пленки, что ведет к значительной электрохимической неоднородности и, как следствие, к развитию местной коррозии.
В барабанах парогенераторов трещины коррозионной усталости возникают при попеременном нагреве и охлаждении металла на небольших участках в местах соединения трубопроводов (питательной воды, периодической продувки, ввода раствора фосфата) и водоуказательных колонок с телом барабана. Во всех этих соединениях металл барабана охлаждается, если температура протекающей по трубе питательной воды меньше температуры насыщения при давлении в парогенераторе. Местное охлаждение стенок барабана с последующим обогревом их горячей котловой водой (в моменты прекращения питания) всегда сопряжено с появлением в металле высоких внутренних напряжений.
Коррозионное растрескивание стали резко усиливается в условиях попеременного смачивания и высыхания поверхности, а также в тех случаях, когда движение по трубе пароводяной смеси имеет пульсирующий характер, т. е. часто и резко изменяются скорость движения пароводяной смеси и ее паросодержание, а также при своеобразном расслоении пароводяной смеси на отдельные «пробки» пара и воды, следующие друг за другом.
3.4.2. Коррозия пароперегревателей
Скорость пароводяной коррозии определяется преимущественно температурой пара и составом контактирующего с ним металла. Существенное значение в ее развитии имеют также величины теплообмена и температурных колебаний при работе пароперегревателя, вследствие которых может наблюдаться разрушение защитных окисных пленок. В среде перегретого пара с температурой больше
575 °С на поверхности стали в результате пароводяной коррозии образуется FeO (вюстит):
(2.9) |
который при более низких температурах распадается по реакции
(2.10) |
Установлено, что трубы, изготовленные из обычной малоуглеродистой стали, находясь в течение длительного времени под воздействием высокоперегретого пара, равномерно разрушаются с одновременным перерождением структуры металла и образованием плотного слоя окалины. В парогенераторах сверхвысокого и сверхкритического давлений при температуре перегрева пара 550 °С и выше наиболее теплонапряженные элементы пароперегревателя (выходные участки) обычно изготовляют из теплостойких аустенитных нержавеющих сталей (хромоникелевых, хромомолибденовых и др.). Эти стали в условиях совместного действия растягивающих напряжений и коррозионно-агрессивной среды подвержены растрескиванию. Большинство эксплуатационных повреждений пароперегревателей, характеризующихся коррозионным растрескиванием элементов из аустенит-ных сталей, обусловлено присутствием в паре хлоридов и едкого натра. Борьба с коррозионным растрескиванием деталей из аустенитных сталей осуществляется главным образом посредством поддержания безопасного водного режима парогенераторов.